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Summary

Although several clinical trials are now underway to test possible therapies, the worldwide
response to the COVID-19 outbreak has been largely limited to monitoring/containment. We
report here that Ivermectin, an FDA-approved anti-parasitic previously shown to have broad-
spectrum anti-viral activity in vitro, is an inhibitor of the causative virus (SARS-CoV-2), with
a single addition to Vero-hSLAM cells 2 hours post infection with SARS-CoV-2 able to
effect ~5000-fold reduction in viral RNA at 48 h. Ivermectin therefore warrants further

investigation for possible benefits in humans.
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Ivermectin is an FDA-approved broad spectrum anti-parasitic agent1 that in recent years we,
along with other groups, have shown to have anti-viral activity against a broad range of

viruses>?

in vitro. Originally identified as an inhibitor of interaction between the human
immunodeficiency virus-1 (HIV-1) integrase protein (IN) and the importin (IMP) /31
heterodimer responsible for IN nuclear import®, Ivermectin has since been confirmed to
inhibit IN nuclear import and HIV-1 replication’. Other actions of ivermectin have been
reported’, but ivermectin has been shown to inhibit nuclear import of host (eg. ® °) and viral
proteins, including simian virus SV40 large tumour antigen (T-ag) and dengue virus (DENV)
non-structural protein 5> °. Importantly, it has been demonstrated to limit infection by RNA
viruses such as DENV 1—44, West Nile Viruslo, Venezuelan equine encephalitis virus
(VEEV)’ and influenza®, with this broad spectrum activity believed to be due to the reliance
by many different RNA viruses on IMPo/B1 during infection'" '?. Ivermectin has similarly
been shown to be effective against the DNA virus pseudorabies virus (PRV) both in vitro and
in vivo, with ivermectin treatment shown to increase survival in PRV-infected mice".
Efficacy was not observed for ivermectin against Zika virus (ZIKV) in mice, but the authors
acknowledged that study limitations justified re-evaluation of ivermectin’s anti-ZIKV
activity14. Finally, ivermectin was the focus of a phase III clinical trial in Thailand in 2014-
2017, against DENV infection, in which a single daily oral dose was observed to be safe and
resulted in a significant reduction in serum levels of viral NS1 protein, but no change in
viremia or clinical benefit was observed (see below)ls.

The causative agent of the current COVID-19 pandemic, SARS-CoV-2, is a single
stranded positive sense RNA virus that is closely related to severe acute respiratory syndrome
coronavirus (SARS-CoV). Studies on SARS-CoV proteins have revealed a potential role for
IMPo/31 during infection in signal-dependent nucleocytoplasmic shutting of the SARS-CoV

16-18

Nucleocapsid protein'®'®, that may impact host cell division'”?. In addition, the SARS-CoV
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accessory protein ORF6 has been shown to antagonize the antiviral activity of the STATI1
transcription factor by sequestering IMPa/B1 on the rough ER/Golgi membrane®'. Taken
together, these reports suggested that ivermectin’s nuclear transport inhibitory activity may
be effective against SARS-CoV-2.

To test the antiviral activity of ivermectin towards SARS-CoV-2, we infected
Vero/hSLAM cells with SARS-CoV-2 isolate Australia/VIC01/2020 at an MOI of 0.1 for 2
h, followed by the addition of 5 UM ivermectin. Supernatant and cell pellets were harvested
at days 0-3 and analysed by RT-PCR for the replication of SARS-CoV-2 RNA (Fig. 1A/B).
At 24 h, there was a 93% reduction in viral RNA present in the supernatant (indicative of
released virions) of samples treated with ivermectin compared to the vehicle DMSO.
Similarly a 99.8% reduction in cell-associated viral RNA (indicative of unreleased and
unpackaged virions) was observed with ivermectin treatment. By 48h this effect increased to
an ~5000-fold reduction of viral RNA in ivermectin-treated compared to control samples,
indicating that ivermectin treatment resulted in the effective loss of essentially all viral
material by 48 h. Consistent with this idea, no further reduction in viral RNA was observed at
72 h. As we have observed previously’™, no toxicity of ivermectin was observed at any of the
timepoints tested, in either the sample wells or in parallel tested drug alone samples.

To further determine the effectiveness of ivemectin, cells infected with SARS-CoV-2 were
treated with serial dilutions of ivermectin 2 h post infection and supernatant and cell pellets
collected for real-time RT-PCR at 48 h (Fig. 1C/D). As above, a >5000 reduction in viral
RNA was observed in both supernatant and cell pellets from samples treated with 5 pM
ivermectin at 48 h, equating to a 99.98% reduction in viral RNA in these samples. Again, no
toxicity was observed with ivermectin at any of the concentrations tested. The IC50 of
ivermectin treatment was determined to be ~2UM under these conditions. Underlining the

fact that the assay indeed specifically detected SARS-CoV-2, RT-PCR experiments were
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repeated using primers specific for the viral RdRp gene (Fig. 1E/F) rather than the E gene
(above), with nearly identical results observed for both released (supernatant) and cell-
associated virus.

Taken together these results demonstrate that ivermectin has antiviral action against
the SARS-CoV-2 clinical isolate in vitro, with a single dose able to control viral replication
within 24-48 h in our system. We hypothesise that this is likely through inhibiting IMPa/31-
mediated nuclear import of viral proteins (Fig. 1G), as shown for other RNA viruses * > '*;
confirmation of this mechanism in the case of SARS-CoV-2, and identification of the specific
SARS-CoV-2 and/or host component(s) impacted (see 10) is an important focus future work
in this laboratory. Ultimately, development of an effective anti-viral for SARS-CoV-2, if
given to patients early in infection, could help to limit the viral load, prevent severe disease
progression and limit person-person transmission. Benchmarking testing of ivermectin
against other potential antivirals for SARS-CoV-2 with alternative mechanisms of action®*°
would thus be important as soon as practicable. This Brief Report raises the possibility that
ivermectin could be a useful antiviral to limit SARS-CoV-2, in similar fashion to those

d22'26; until one of these is proven to be beneficial in a clinical setting, all

already reporte
should be pursued as rapidly as possible.

Ivermectin has an established safety profile for human use" '> %', and is FDA-
approved for a number of parasitic infections" ?’. Importantly, recent reviews and meta-
analysis indicate that high dose ivermectin has comparable safety as the standard low-dose
treatment, although there is not enough evidence to make conclusions about the safety profile
in pregnancy >* . The critical next step in further evaluation for possible benefit in COVID-
19 patients will be to examine a multiple addition dosing regimen that mimics the current

approved usage of ivermectin in humans. As noted, ivermectin was the focus of a recent

phase III clinical trial in dengue patients in Thailand, in which a single daily dose was found
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to be safe but did not produce any clinical benefit. However, the investigators noted that an
improved dosing regimen might be developed, based on pharmacokinetic data'>. Although
DENV is clearly very different to SARS-CoV-2, this trial design should inform future work
going forward. Altogether the current report, combined with a known-safety profile,
demonstrates that ivermectin is worthy of further consideration as a possible SARS-CoV-2

antiviral.

Methods

Cdll culture, viral infection and drug treatment

Vero/hSLAM cells® were maintained in Earle’s Minimum Essential Medium (EMEM)
containing 7% Fetal Bovine Serum (FBS) (Bovogen Biologicals, Keilor East, AUS) 2 mM L-
Glutamine, 1 mM Sodium pyruvate, 1500 mg/L sodium bicarbonate, 15 mM HEPES and 0.4
mg/ml geneticin at 37°C, 5% CO,. Cells were seeded into 12-well tissue culture plates 24 h
prior to infection with SARS-CoV-2 (Australia/VIC01/2020 isolate) at an MOI of 0.1 in
infection media (as per maintenance media but containing only 2% FBS) for 2 h. Media
containing inoculum was removed and replaced with 1 mL fresh media (2% FBS) containing
Ivermectin at the indicated concentrations or DMSO alone and incubated as indicated for 0-3
days. At the appropriate timepoint, cell supernatant was collected and spun for 10 min at
6,000g to remove debris and the supernatant transferred to fresh collection tubes. The cell
monolayers were collected by scraping and resuspension into 1 mL fresh media (2% FBS).

Toxicity controls were set up in parallel in every experiment on uninfected cells.

Generation of SARS-CoV-2 cDNA
RNA was extracted from 200 pL aliquots of sample supernatant or cell suspension using the

QIAamp 96 Virus QIAcube HT Kit (Qiagen, Hilden, Germany) and eluted in 60 pl. Reverse
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transcription was performed using the BioLine SensiFAST cDNA kit (Bioline, London,
United Kingdom), total reaction mixture (20 pl), containing 10 pL. of RNA extract, 4 pl of 5x
TransAmp buffer, 1ul of Reverse Transcriptase and 5 pl of Nuclease free water. The

reactions were incubated at 25°C for 10 min, 42°C for 15 min and 85°C for 5 min.

Detection of SARS-CoV-2 using a TagMan Real-time RT-PCR assay.

TagMan RT-PCR assay were performed using 2.5 pl cDNA, 10 pl Primer Design
PrecisonPLUS qPCR Master Mix 1 uM Forward (5’- AAA TTC TAT GGT GGT TGG CAC
AAC ATG TT-3’), 1 uM Reverse (5’- TAG GCA TAG CTC TRT CAC AYT T-3’) primers
and 0.2 pM probe (5’-FAM- TGG GTT GGG ATT ATC-MGBNFQ-3’) targeting the
BetaCoV RdRp (RNA-dependent RNA polymerase) gene or Forward (5’-ACA GGT ACG
TTA ATA GTT AAT AGC GT -3°), 1 uM Reverse (5’-ATA TTG CAG CAG TAC GCA
CAC A-3’) primers and 0.2 uM probe (5’-FAM-ACA CTA GCC ATC CTT ACT GCG CTT
CG-

286 NFQ-3’) targeting the BetaCoV E—gene31. Real-time RT-PCR assays were performed on
an Applied Biosystems ABI 7500 Fast real-time PCR machine (Applied Biosystems, Foster
City, CA, USA) using cycling conditions of 95°C for 2 min, 95°C for 5 s, 60°C for 24 s.
SARS-CoV-2 ¢cDNA (Ct~28) was used as a positive control. Calculated Ct values were
converted to fold-reduction of treated samples compared to control using the ACt method
(fold changed in viral RNA = 272ACt) and expressed as % of DMSO alone sample. IC50

values were fitted using 3 parameter dose response curves in GraphPad prism.
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Figure 1. lvermectin is a potent inhibitor of the SARS-CoV-2 clinical isolate
Australia/VI1C01/2020. Vero/hSLAM cells were in infected with SARS-CoV-2 clinical
isolate Australia/VIC01/2020 (MOI = 0.1) for 2 h prior to addition of vehicle (DMSO) or
Ivermectin at the indicated concentrations. Samples were taken at 0-3 days post infection for
quantitation of viral load using real-time PCR of cell associated virus (A) or supernatant (B).
ICsp values were determined in subsequent experiments at 48 h post infection using the
indicated concentrations of Ivermectin (treated at 2 h post infection as per A/B). Triplicate
real-time PCR analysis was performed on cell associated virus (C/E) or supernatant (D/F)
using probes against either the SARS-CoV-2 E (C/D) or RdRp (E/F) genes. Results represent
mean * SD (n=3). 3 parameter dose response curves were fitted using GraphPad prism to
determine ICsy values (indicated). G. Schematic of ivermectin’s proposed antiviral action on
coronavirus. IMP0o/31 binds to the coronavirus cargo protein in the cytoplasm (top) and
translocates it through the nuclear pore complex (NPC) into the nucleus where the complex
falls apart and the viral cargo can reduce the host cell’s antiviral response, leading to
enhanced infection. Ivermectin binds to and destabilises the Impa/31 heterodimer thereby
preventing Impo/B1 from binding to the viral protein (bottom) and preventing it from
entering the nucleus. This likely results in reduced inhibition of the antiviral responses,

leading to a normal, more efficient antiviral response.
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Highlights

e Ivermectin is an inhibitor of the COVID-19 causative virus (SARS-CoV-2) in vitro.

* A ssingle treatment able to effect ~5000-fold reduction in virus at 48h in cell culture.

* Ivermectin is FDA-approved for parasitic infections, and therefore has a potential for
repurposing.

* Ivermectin is widely available, due to its inclusion on the WHO model list of essential
medicines.



