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Skeletal muscle mitochondrial dysfunction & diabetes
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Skeletal muscle insulin resistance is a key contributor to the pathophysiology of type 2 diabetes.
Recent studies have shown that insulin resistance in a variety of conditions including type 2 diabetes,
ageing and in offspring of type 2 diabetes is associated with muscle mitochondrial dysfunction.
The important question is whether insulin resistance results from muscle mitochondrial dysfunction
or vise versa. Gene array studies from muscle biopsy samples showed that transcript levels of
several genes, especially OXPHOS genes are altered in type 2 diabetic patients during poor glycaemic
control but many of these alterations are normalized by insulin treatment suggesting that reduced
insulin action is a factor involved in muscle mitochondrial dysfunction. Moreover, insulin infusion
while maintaining glucose and amino acid levels results in increase in muscle mitochondrial gene
transcript levels and ATP production indicating that insulin is a key regulator of muscle
mitochondrial biogenesis. At a similar post-absorptive insulin levels both type 2 diabetic patients
and non diabetic controls have similar muscle mitochondrial ATP production but increasing insulin
from low to high levels stimulate ATP production only in non diabetic people but not in the diabetic
people. The lack of muscle mitochondrial response to insulin in type 2 diabetic patients is likely to

be related to insulin resistance and reduced substrate utilization.
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Type 2 diabetes mellitus is becoming a worldwide
problem of epidemic proportions'. Diabetes and its
chronic complications, especially premature
cardiovascular diseases, are emerging as a major threat
to the welfare of humanity’. The problem is almost of
pandemic proportion in societies such as in India where
there are rapid changes in lifestyle® resulting from
socio-economic advances. Changes in socio-economic
status alone are unlikely to explain the increased
prevalence of diabetes among Indians because in places
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like Singapore where Chinese and Malay populations
with similar socio-economic status as Indians have
lower prevalence of diabetes than Indian ethnic
population’. Based on available data, lifestyle changes
coupled with genetic predisposition have been
proposed as reasons for the high incidence of diabetes
among Asian Indians®. Diabetes, with its attendant acute
and long term complications, and the myriad of
disorders associated with it, is a major public health
hazard with its major impact on rapidly expanding
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urban population. Recently studies reported from south
India®'" and nationwide studies in India'? confirmed the
high prevalence of diabetes among native Indians. The
prevalence rate of diabetes among Indians ranges from
3 per cent in rural areas®'" to over 16 per cent in
urbanized cities with the highest life expectancy such
as Trivandrum (now Thiruvananthapuram), Kerala State
in India'. Studies have shown that compared with
diabetic patients of Caucasian origin, the typical diabetic
Indian patient presents earlier in life and demonstrates
insulin resistance'’ and develop diabetes with lower
body mass index. However, in general the incidence of
type 2 diabetes increases with age. Insulin resistance
also is known to increase with age'®. The important
question remains to be answered is what is the
underlying cause of type 2 diabetes. There is compelling
evidence to demonstrate mitochondrial dysfunction
with age'”. Since diabetes is a metabolic problem we
have focused our recent research on mitochondria which
is the location of most of fuel metabolism in the body.
Though skeletal muscle is the predominant site of
disposal of glucose and fatty acids following a meal
and skeletal muscle insulin resistance has been well
established as the beginning event of type 2 diabetes,
the underlying mechanism remains to be determined'®"”.
In this article we provide an integrative view on the
interrelation between muscle mitochondrial changes
resulting in reduced oxidative phosphorylation and
insulin resistance and other changes in physical
performance in type 2 diabetes.

Association between muscle mitochondrial
dysfunction and diabetes

There is increasing evidence that muscle
mitochondrial dysfunction occurs in many insulin
resistant states such as in type 2 diabetes??, offspring
of people with type 2 diabetes*?® and in obesity?’.
Although a clear association between insulin resistance,
type 2 diabetes and muscle mitochondrial dysfunction
has been demonstrated, no causal relationship has been
established. However, mitochondrial dysfunction may
be central to the pathogenesis and the pathophysiology
of type 2 diabetes, as it may contribute to insulin
resistance”?® as well as to impaired insulin secretion,

and also to diabetic complications®. It has been
proposed that reduced muscle mitochondrial activity
results in accumulation of intracellular triglyceride
accumulation that causes insulin resistance®. An
alternative hypothesis®*-° that we pursue is that insulin
resistance causes muscle mitochondrial dysfunction.
The basis of the above hypothesis is that insulin
enhances muscle mitochondrial biogenesis®. It has been
observed that the activity of the mitochondrial electron
transport chain is reduced in the muscles of patients
with type 2 diabetes, and that muscle mitochondria are
smaller in these patients?*?.

Mitochondrial oxidative phosphorylation by the
electron transport chain provides energy for
adenosine triphosphate (ATP) production. This,
however, also generates reactive oxygen species
(ROS). ROS causes damage to DNA, proteins, and
membrane structures. An imbalance between
increased ROS and decreased endogenous
antioxidants within the mitochondria will enhance
the damaging effects of ROS. Further, ROS may lead
to increased mutations in mitochondrial DNA
(mtDNA), which has a limited repair capacity®.
Accumulation of point mutations in mtDNA has been
reported in ageing humans®'. The production of ROS
also increases with ageing, while defense mechanisms
against ROS decrease®. We have recently shown that
mitochondrial DNA oxidative damage is higher with
age and mitochondrial DNA copy numbers decline
with age?. Moreover, this reduction in mitochondrial
DNA copy numbers®!'* may be the underlying
mechanism of reduced mitochondrial mRNA
abundance'®, reduced muscle mitochondrial protein
synthesis®*, and reduced muscle mitochondrial protein
content and ATP production with age®. It has been
suggested that diabetes, through glucolipotoxicity,
causes mitochondrial dysfunction and excess ROS
production in a similar way to accelerated tissue
aging®. During electron transport chain (ETC) reaction
oxygen species (ROS) are formed (Fig.). Elevated
fatty acids may also result in ROS formation and act
in concert with the pathogenic effect of high glucose*.
Hyperglycaemia-induced overproduction of
superoxide by the mitochondrial electron transport
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chain appears to play a major role in the pathways
leading to diabetic complications*. Normalizing levels
of mitochondrial ROS with various agents has been
shown to prevent glucose-induced activation of the
diverse pathways implicated in diabetic
complications®. However, the impact of these agents
in human diabetes or pre-diabetes state has not been
established.

Evidence of mitochondrial defects in diabetes

Mitochondrial genome and its potential role in diabetes:
Based on recent evidences it has been proposed that a
decreased oxidative capacity and mitochondrial
aberrations act as a potential contributor to the
development of insulin resistance and type 2 diabetes™.
Mitochondria provide cells with most of the energy in
the form of ATP. Mitochondria are complex organelles
encoded both by nuclear and mitochondrial DNA. Only
about 15 per cent mitochondrial components are
encoded by mtDNA, most of the mt-proteins are nuclear
DNA encoded. However, all components of protein
complexes are critical for mitochondrial functions.
Majority of the known mutations leading to a

mitochondrial disease have been identified in mtDNA
rather than in nuclear DNA. Many of these mutations
cause metabolic defects. Recent studies have shown that
mitochondrial DNA mutations accelerate aging in
mice®’. One important question is whether oxidative
damage to mtDNA is higher or not in diabetes because
of the increased ROS formation in diabetic patients.
The mitochondrial matrix, which contains DNA, RNA,
and numerous enzymes necessary for substrate
oxidation, is sensitive to peroxide-induced oxidative
damage and needs to be protected against the formation
and accumulation of lipids and lipid peroxides. Recent
evidence reports that mitochondrial uncoupling is
involved in the protection of the mitochondrial matrix
against lipid-induced mitochondrial damage.
Disturbances in this protection mechanism can
contribute to the development of type 2 diabetes™®.

As discussed, apart from producing ATP,
mitochondria are also a major source of ROS*. These
ROS products have a very short half-life and react
rapidly with DNA, protein, and lipids, thereby leading
to oxidative damage which leads to oxidative stress.
Oxidative stress occurs when the balance between the

e transfer ADP ATP ADP
NADH FAR H2 02 \ ’ Pi H"‘
H.0, ‘/
Fatty
acids / \
Glucose, H.O ROS

Amino acids

Fig. Oxidative phosphorylation pathways in mitochondria. Reactive oxygen species (ROS) is the toxic byproduct of ATP production
and is involved in developing oxidative stress in diabetes. TCA, Tricarboxytic acid; ANT, Adenine Nucleotide Translocase.
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production of oxidation products and the ability of
antioxidant mechanisms to neutralize these products is
tilted in the favour of the former. The production of
reactive oxygen species increases in patients with
diabetes®. The possible sources for the overproduction
of reactive oxygen species are widespread and include
enzymatic pathways, autoxidation of glucose and the
mitochondria. In diabetes, the overproduction of O* has
been attributed to increase in the activity of several
enzymes including nitric oxide synthase and NADH/
NAD(P)H oxidase®. In conditions related to diabetes,
high glucose and free fatty acid levels have been shown
to stimulate ROS production in cultured vascular cells
through a protein kinase C (PKC)-dependent activation
of NAD(P)H oxidase*'. Activation of NAD(P)H oxidase
has also been linked to the increased production of
advanced glycation end-products(AGEs)*. Exposing
cultured human endothelial cells to increased
concentrations of AGEs caused an increase in
intracellular formation of H,O, and expression of
vascular cell adhesion molecule-1, which was
suppressed by diphenyliodonium*. In aortas from
diabetic rats Hink er al** found an activation of
NAD(P)H oxidase and a 7-fold increase in gp91phox
mRNA levels, a subunit of the NAD(P)H complex.
Angiotensin II, which is increased in diabetes, through
activation of angiotensin-1 receptors has also been
demonstrated to upregulate several subunits of NAD(P)H
oxidase and increase intracellular levels of O* *.

Direct evidence that increased NAD(P)H oxidase
activity impairs vascular function comes from studies
by Hamilton ef al®. They demonstrated that inhibition
of NAD(P)H activity with apocynin decreased O*
production by human mammary arteries and
saphenous veins, increased NO production and
induced vasodilation®. Increased formation of O in
diabetes has also been linked to increased activity of
xanthine oxidase*. The activity of xanthine oxidase
is increased in liver and plasma of diabetic animals,
and in diabetic rabbits, increased O> formation has
been demonstrated to be blocked by allopurinol, an
inhibitor of xanthine oxidase*. Another enzyme
system that produces ROS in the vascular wall is nitric
oxide synthase (NOS). In diabetes the generation

and/or bioactivity of NO by endothelial NOS (eNOS)
is reduced*’. However, a decrease in substrate and co-
factor availability, arginine and tetrahydrobiopterin
(TH,), respectively, may also contribute to this deficit.
The administration of arginine has been demonstrated
to improve vascular function in diabetic patients and
animal models*’. Likewise, the administration of
tetrahydrobiopterin derivative has been shown to
improve diabetes-impaired vascular function*. In
suboptimal
tetrahydrobiopterin reduces the formation of NO and
favours “uncoupling” of NOS leading to NOS-
mediated reduction of oxygen and formation of O*
and H,0,*. Excessive amounts of ROS may also arise
from dysregulation of the mitochondrial electron

diabetes a concentration of

transport chain. Four main molecular mechanisms viz.,
increased flux of glucose through the polyol pathway,
increased formation of AGEs, increased activity of
PKC, and increased flux through the hexosamine
pathway have been linked to hyperglycaemia-induced
vascular dysfunction®. These mechanisms have in
common one feature which is the overproduction of
O* by the mitochondrial electron-transport chain®.

Several other studies support the paradigm that
mitochondria are a major source for O* production
in the vasculature of diabetic rats®'. Using cultured
bovine aortic endothelial cells, Brownlee et al>®
demonstrated that hyperglycaemia increased O*
production. Hyperglycaemia, due to an
overproduction of electron donors derived from
glycolysis and the TCA cycle, has been demonstrated
to increase the proton gradient across the
mitochondrial inner membrane above a threshold
level causing a prolonged period of O* generation®*>>.
It has been shown that overexpression of Mn-SOD
abolishes the signal generated by ROS, and
overexpression of uncoupling protein-1 collapses the
proton electrochemical gradient, thereby preventing
the overproduction of ROS by endothelial cells®.
Overall, these studies demonstrate that multiple
sources exist for overproduction of ROS in diabetes
and illustrate the challenges facing investigators in
designing strategies to prevent the development of
oxidative stress.
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Mitochondrial damage: a role for lipid peroxides and
hyperglycaemia: Fatty acids are particularly prone to
oxidative damage, resulting in the formation of lipid
peroxides. These peroxide products are cytotoxic and
highly reactive, leading to free-radical damage to
proteins and DNA. Therefore, accumulation of fatty
acids in the vicinity of the mitochondrial matrix, where
oxidative processes take place, makes them prone to
lipid peroxidation, which eventually may result in
damaged mitochondrial proteins and reduced oxidative
capacity as a consequence. Such a situation might be
the case in type 2 diabetes. Patients with type 2 diabetes
are characterized by high plasma FFA levels* and a
reduced fat oxidative capacity®. Under such conditions,
fatty acids that cannot be oxidized will accumulate in
the muscle cell*®*¢, and the increased load of fatty acids
on the mitochondrial membrane will lead to the entrance
of neutral fatty acids into the mitochondrial matrix"’,
where they are prone to peroxidation. When
mitochondrial ROS production becomes excessive, and
lipid peroxides are formed, mitochondrial uncoupling
would reduce ROS production, thereby reducing the
formation of lipid peroxides. In skeletal muscle, 4-
hydroxy-2-nonenal-induced uncoupling was shown to
be accomplished by the mitochondrial uncoupling
protein (UCP)-3%, which is in accordance with the
earlier notion that UCP3 plays a role in the prevention
of excessive ROS¥. This negative feedback loop
appears to be interrupted in the absence of UCP3, as
UCP3-ablated mice have been shown to haveincreased
skeletal muscle ROS production®, increased lipid
peroxidation, and damage to mitochondrial proteins®.
Consistent with this idea is the recent finding that
skeletal muscle of obese insulin-resistant subjects
contained a higher amount of intramyocellular lipids
and, more importantly, these lipids showed a higher
degree of lipid peroxidation®'. Also, in the elderly it was
shown that muscular lipid accumulation is related to
mitochondrial dysfunction and insulin resistance®, and
aging is associated with accumulation of ROS-induced
mutations in control sites of mtDNA replication®’.
Together, these results suggest that lipid accumulation
in muscle cells, as observed in type 2 diabetes*®*, could
impair mitochondrial oxidative capacity due to lipid
peroxidation-induced damage to mitochondria. In turn,

the reduced mitochondrial oxidative capacity would
further exacerbate the storage of lipids inside the muscle
cell. Together, with a suggested reduced peroxisome
proliferator-activated receptor (PPAR)-y co-activator
(PGC1) activity, which would limit mitochondrial
biogenesis®?, a positive feedback loop would exist in
which mitochondrial functioning would rapidly
deteriorate.

Both type 1% and type 2°¢7 diabetes is
characterized by hypermetabolic states. While
glucose and fatty acid fluxes and oxidation are
increased in type 2 diabetes, amino acid oxidation is
increased in type 1 diabetes®®®. However, the
hypermetabolic state in type 2 diabetes is reversible
by treatment. In remains to be determined whether
untreated diabetes and hypermetabolic state
contribute to mitochondrial damage and dysfunction
and treatment prevents the mitochondrial damage.
Oxidation of glucose, fatty acids, and amino acids
ultimately produces acetyl CoA that enters Kreb’s
cycle and produce electron carriers-NADH and
FADH that enter into mitochondrial respiratory
chain. High flux of substrate oxidation results in
high superoxide formation that may damage
mitochondrial DNA or even the integrity of
mitochondrial inner membrane. The impact of these
are not only in diabetic complications but also on
further deterioration of mitochondrial function.

Mitochondrial DNA mutations and depletion in type 2
diabetes: Research in this field is largely focused on
the analysis of insulin receptors and pancreatic beta-
cell dysfunction, it has become apparent that mutations
in mtDNA can also lead to type 2 diabetes. A total of
about 40 mutations have been catalogued that result in
diabetes mellitus’. Many of these mutations are
associated with type 1 diabetes, yet a lesser number of
mutations leads to type 2 diabetes. Maternally inherited
type 2 diabetes was one of the first mitochondrially
inherited diabetic conditions discovered by Ballinger
et al’. Tt is the most common form of mitochondrial
type 2 diabetes accounting for 1-2 per cent of diabetes
cases and is caused by an adenine to guanine mutation
in the tRNA _ "> Itis reported that a strong association
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exists between the level of mutational heteroplasmy and
type 2 diabetes diagnosis™. Several other mutations on
mtDNA found to correspond to the type 2 diabetes are
spread throughout the mitochondrial genome™.

Mitochondrial dysfunction as seen in the
depletion of mtDNA may play an important role in
pathogenesis of type 2 diabetes. It is shown in rat
model of type 2 diabetes with impaired insulin
secretion that the mitochondria of beta cells were
decreased in volume along with a decrease in mtDNA
copies”. This decrease in mtDNA was not associated
with any major mutations or deletions and was
observed only in adults, not in foetal tissue. These
results suggest a connection between glucose
stimulated insulin secretion and mtDNA depletion.
Another example of exogenously induced oxidative
damage to mtDNA is illustrated with streptozotocin
to create diabetes in animals’.

mRNA abundance of mitochondrial/nuclear proteins
in type 2 diabetes: Increasing evidences support that
mtDNA damage accumulates with ageing, particularly
in skeletal muscle where insulin resistance occurs in
type 2 diabetes. However, the question that remains
is whether these changes affect mitochondrial function
in type 2 diabetes. Mitochondrial DNA damage could
limit mitochondrial gene expression at the level of
transcription and eventually at translation level. We
have shown that in skeletal muscle transcript levels
of about 85 genes, including several mitochondrial
genes, were altered in type 2 diabetes and 10 days of
intensive insulin treatment improved the transcripts
level in all but 11 genes?®!. The 11 genes that remained
unaltered by insulin treatment include some of the
genes involved in muscle mitochondrial function.
However, insulin treatment altered the transcription
of 29 additional genes involved in different metabolic
functions including energy metabolism. This study and
several other follow up studies®*”” identified some of
the candidate genes for muscle insulin resistance,
complications associated with poor glycaemic control
in people with type 2 diabetes. These follow up studies
used larger number of subjects and more sophisticated
bioinformatics system, but did not consider the

potential interactions of glucose and insulin levels on
muscle gene transcript levels. Since insulin has been
shown to affect muscle gene transcript levels,
especially of those mitochondrial genes?!*, it is
difficult to interpret the muscle gene transcript
expression data of type 2 diabetic patients in
comparison with non diabetic people unless insulin
and glucose levels are controlled to match each group.

In general, it appears that multiple gene transcript
levels are altered in skeletal muscle of type 2 diabetic
patients but many of them, especially of those of
mitochondrial genes are normalized by insulin. What
remains to be determined is the proportion of genes
whose transcripts remain unaltered by insulin. The
important question is whether these genes are involved
in insulin resistance and muscle mitochondrial
dysfunctions. An alternative explanation is that these
genes that remain unaltered by insulin treatment, may
represent the effect of insulin resistance in type 2
diabetic patients. In addition, a number of other genes
are shown to be involved in insulin resistance in
skeletal muscle of people with type 2 diabetes which
included insulin receptor substrate 178, glycogen
synthetase”, uncoupling protein-3 (UCP-3)¥, glucose
transporter-4 (GLUT-4)%!, hexokinase II%?, PI3-
kinase®, MAP kinase®, serine-threonine kinase®, rad
genes™, calpain-10* and mitochondrial transcription
factor A (mtTFA)%. Peroxisome proliferator-activated
receptor gamma co-activator 1 alpha is emerging as a
pivotal regulator of mitochondrial biogenesis in
skeletal muscle®*°, and its transcript levels are reduced
in skeletal muscle from type 2 diabetic and insulin-
resistant individuals*77, suggesting a potential
common signaling pathway linking insulin sensitivity
and mitochondrial function.

Mitochondrial protein synthesis and function in skeletal
muscle in type 2 diabetes: Impaired insulin action to
stimulate tissue substrate utilization with particular
regard to glucose is a common metabolic defect and a
defining feature of insulin resistance in both type 2
diabetes and ageing®?. Skeletal muscle is a key
metabolic organ and the major site of insulin-mediated
glucose disposal, and has been shown to play a pivotal
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role in the metabolic alterations of type 2 diabetes. Since
proteins are the key functional molecules we determined
whether synthesis rates of muscle proteins, especially
mitochondrial proteins are altered in type 2 diabetes.

In recent years, acute increments in the plasma
insulin concentration have been demonstrated to
stimulate skeletal muscle mitochondrial gene
expression, mitochondrial protein synthesis and
function in vivo in healthy individuals. In a miniature
pig model, acute intravenous insulin infusion was
shown to enhance the mitochondrial protein synthesis
rate in a tissue-specific fashion®*. Mitochondrial
protein synthesis was increased in skeletal muscle, but
not in cardiac muscle and liver. Indeed, liver
mitochondrial protein synthesis tended to be lower
during hyperinsulinaemia, indicating that the
stimulatory effect of insulin is specific to skeletal
muscle under these experimental conditions®'. The
insulin effects were similar in the presence of near-
basal or moderately increased plasma amino acid
concentrations. Importantly, increased mitochondrial
protein synthesis was not associated with increments
in the synthesis rates of other muscle protein pools,
including sarcoplasmic protein and major contractile
protein myosin heavy chain®. This study indicated a
novel effect of insulin in selectively enhancing muscle
mitochondrial protein synthesis in vivo.

Skeletal muscle has also emerged as a target of
acute insulin effects on muscle mitochondria in humans.
Hyperinsulinaemia in the high physiological range
increased transcript levels of complex I and complex
IV subunits of the respiratory chain®. Interestingly,
increments in mitochondrial transcripts were positively
related to those of insulin-mediated glucose disposal®,
supporting the concept that muscle mitochondria are
responsive to insulin action to increase fuel utilization.
A recent study? further characterized the role of insulin
in the acute regulation of skeletal muscle mitochondrial
function. When insulin was infused into healthy men
and women, mitochondrial transcript levels, protein
synthesis, respiratory chain enzyme activity and the
ATP production rate all significantly increased after 7
h, with a trend towards an increment also at 4 h. This

study introduced the theory that insulin is a stimulant
of muscle mitochondrial biogenesis and function in vivo
in humans.

As insulin resistance characterizes type 2 diabetes,
it is conceivable that mitochondrial defects occur in
this disease, in particular in skeletal muscle. Stump et
al® provided further important evidence in this regard
by demonstrating that the acute stimulation of
mitochondrial ATP production when insulin infusion
was increased from low to a higher level observed in
healthy individuals, was not achieved in age-matched
individuals with type 2 diabetes. A defective response
of skeletal muscle mitochondria to acute insulin-
induced stimulation thus occurs in humans with type 2
diabetes. An altered mitochondrial response to insulin
may contribute to impaired substrate utilization, as an
integral component of insulin resistance in this disease.
These results are particularly relevant to the post-
prandial period, when plasma insulin concentrations
increase in an acute fashion to levels comparable to
those achieved in the study. It remains to be determined
whether reduced insulin action or glucose disposal
caused muscle mitochondrial defect or mitochondrial
defect caused impaired glucose disposal.

Reports of mitochondrial oxidative capacity in
skeletal muscle from individuals with type 2 diabetes
under basal post-absorptive conditions have been
somewhat conflicting. Some studies observed reduced
post-absorptive mitochondrial citrate synthase activity
in obese individuals with type 2 diabetes after treatment
withdrawal compared with non diabetic lean® or obese
non diabetic control individuals?*®. Other studies did
not confirm these findings, reporting comparable
activities of oxidative marker enzymes in human
diabetic and non diabetic muscle®”*3. One of the reports®
however, demonstrated an increased fatigability of leg
muscle, defined as reduced strength after repeated
contractions, a potential indicator of reduced muscle
mitochondrial ability to generate ATP. A general
relationship between muscle oxidative capacities and
glucose disposal has been confirmed in several
studies®*®7. In the only study measuring muscle
mitochondrial protein fractional synthesis rate®, no
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differences were observed under basal conditions
between obese (body mass index 30 kg/m?) individuals
with type 2 diabetes studied after treatment withdrawal
and either obese or lean non diabetic control groups in
the presence of similar mitochondrial oxidative
capacities. The same study reported a slight (10-12%)
but statistically significant selective increment of
muscle citrate synthase, but not of cytochrome c oxidase
activity, in individuals with diabetes after 10 days of
intensive insulin treatment, in the absence of changes
in the mitochondrial protein synthesis rate®. The reasons
for some discrepancies in basal muscle oxidative
capacities reported in different studies are not
completely clear, although they could be at least partly
accounted for by heterogeneity in type 2 diabetic
populations and treatment status. Chronic moderate
increments of the post-absorptive plasma insulin
concentration can be observed in type 2 diabetes and
were reported in some?*, although not in all®® studies
of muscle mitochondrial function. Reduced oxidative
capacities in the presence of increased insulin levels
raise the possibility that resistance to potential insulin
effects also occurs in the presence of moderate hormone
increments under post-absorptive conditions.

Taken together, available reports support impaired
mitochondrial function in skeletal muscle in type 2
diabetes. Acute effects of high physiological
hyperinsulinaemia to stimulate muscle protein synthesis
and function suggest that either mitochondrial
stimulation is involved in insulin-mediated post-
prandial substrate disposal or reduced substrate disposal
results from mitochondrial dysfunction. Post-
absorptive mitochondrial defects have been
reported*> and could also contribute to altered
substrate utilization in individuals with type 2 diabetes.

Conclusion

It is generally agreed that muscle mitochondrial
capacity to produce ATP is reduced in type 2
diabetes. It remains to be determined whether this is
a functional defect secondary to the diabetic state or
insulin resistance per se is secondary to muscle
mitochondrial dysfunction. Evidences indicate that

insulin itself stimulates mitochondrial biogenesis and
capacity to produce ATP in skeletal muscle. It is
therefore possible that reduced insulin action may
contribute to muscle mitochondrial function. It
remains to be determined whether poor glycaemic
control and hypermetabolic state in diabetes increase
mitochondrial damage ultimately contributing to
reduced mitochondrial function in people with
diabetes. A reduced muscle mitochondrial function
could cause reduction in endurance and thus reduce
spontaneous physical activity levels further
aggrevating insulin resistance.
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