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Abstract

Limiting post-meal glycemic response is an important factor
in reducing the risk of chronic metabolic diseases, and
contributes to significant health benefits in people with
elevated levels of blood sugar. In this study, we collected gut
microbiome activity (i.e., metatranscriptomic) data and
measured the glycemic responses of 550 adults who
consumed more than 30,000 meals from omnivore or
vegetarian/gluten-free diets. We demonstrate that gut
microbiome activity makes a statistically significant
contribution to individual variation in glycemic response, in
addition to anthropometric factors and the nutritional
composition of foods. We describe predictive models
(multilevel mixed-effects regression and gradient boosting
machine) of variation in glycemic response among
individuals ingesting the same foods. @ We introduce
functional features aggregated from microbial activity data
as candidates for association with mechanisms of glycemic
control. In summary, we demonstrate for the first time that
metatranscriptomic activity of the gut microbiome is
correlated with glycemic response among adults.

Introduction

From a public health perspective, preventing elevated levels
of blood glucose is a crucial part of mitigating the current
epidemic of metabolic diseases including obesity, type 2
diabetes, hypertension, cardiovascular and liver diseases.
9.4% of the US population is diabetic and 26% is
prediabetic, creating a large disease burden with associated
healthcare costs [CDC 2017]. Daily food choices play the
largest role in determining overall blood glucose levels and
thus risk for various diseases ([Gutierrez 1998]; [Livesey
2008]; [Jenkins 1985]; [Ludwig 2018]). Tools facilitating

*This study was performed while all authors were at Viome Inc.

the mass adoption of dietary choices to maintain normal
glycemic levels would be an important step towards halting
the hyperglycemia epidemic.

Popular nutritional understanding largely focuses on food
characteristics alone, such as caloric and carbohydrate
content. However, there is increasing evidence that glycemic
response to the same foods differs significantly among
individuals. Recent studies ([Zeevi 2015]; [Mendes-Soares
2019]) have shown that postprandial glycemic response
(PPGR) is not only driven by the glycemic index of food,
but also the individuals’ phenotypic and molecular
characteristics, including the gut microbiome which may
have a role in energy metabolism and the regulation of
insulin response [Suez 2016]. These studies evaluated
postprandial glycemic response (PPGR) in the context of
specific populations (Israeli and US midwestern), a small
number of standardized meals, and 16S or metagenomic data
from the gut microbiome.

In this paper, we present data to demonstrate that the
glycemic response to a range of foods varies based on
individual differences including gut microbiome activity,
i.e., metatranscriptomics of the gut microbiome, and
anthropometrics. The study presented here generalizes
previous results to a significantly larger set of standardized
meals (104 unique pre-designed meals) coming from two
distinct diet types — omnivore and vegetarian/gluten-free.
With the goal of being readily interpretable, this paper
provides a concise statistical explanation of the relationship
of nutrients, phenotypes, and gut microbiome activity with
PPGR, through a multilevel mixed-effects regression model.
We also present a gradient boosting machine model that has
been optimized for predictive accuracy. Furthermore, we
identify multiple significant functional microbiome features
related to prediction of postprandial glycemic response,
indicating that properties correlated with the microbiome
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affect the processing of carbs as well as leading to an overall
difference in baseline blood sugar.

The primary goal of this study was to determine the impact
of microbial gene expression (at the functional level) on
glycemic
microbiome analysis

response. ~ The most commonly used gut
method, the 16S rRNA gene
sequencing, provides poor taxonomic resolution, typically
genera that contain many strains with very diverse gene
content [Knight 2018].

identify some microorganisms (e.g. RNA viruses) and can

Metagenomic methods cannot

only predict gene expression based on the gene content,

which can be highly erroneous [Bervoets 2019]. We

therefore used metatranscriptomics [Hatch 2019], which

sequences RNA molecules and provides the primary

sequence and read counts for each transcript, allowing us to

use

the data for quantitative

strain-level taxonomic

classification and functional pathway analysis ([Gosalbes
2011]; [Bashiardes 2016]; [He 2010]). Due to the challenges
posed by RNA instability, the necessity for removal of
diverse ribosomal RNAs in stool samples, and complex

bioinformatic analyses, metatranscriptomic methods have
not been widely used in clinical studies. To our knowledge,
this is the first study to demonstrate the application of gut

metatranscriptomics in a population-scale dietary study.

DATA COLLECTION
(PER PERSON)
longitudinal Iobservations

I 1
Day 0 Day 7

one-time events
L ‘
|

Day 14

Continuous Glucose

Monitoring
Subcutaneous sensor

Stool Sample
Gut Microbiome
Metatranscriptome

App Questionnaires
Lifestyle, Preferences,
Health History

Provided Meals
Breakfast, Snack, Lunch

Office Visit
Anthropometrics
Blood HbA1c

Meals, Sleep, Activity
using app & wrist devices

Diary ‘

DATA ANALYSIS
(COHORT WIDE)

STUDY COHORT ’

550 participants

8-

Data Fusion
and Pre-processing

-

PPGR Prediction

Machine-Learnt
Algorithm

o

o
o
=]

frequency
N
S
frequency
S
S

20

20 30 40 50 60 70 80 90 15 20 25
age

30 35 40 45 50
BMI

frequency
IN
S
frequency
w
3

4.0 4.5 5.0 5.5 6.0
HbA1c%

Female
Male

0
D 0.7 0.8 0.9 1.0 11

waist to hip

Figure 1: Study Design and

Population Characteristics

1A. The study cohort had 550 adult
participants  (66% female). Each study
participant provided a stool sample, filled out
questionnaires, and made an office visit.
Then over 14 days, participants consumed
pre-designed meals that were provided, they
monitored their blood glucose response, and
they kept a diary of their meals, sleep, &
activity. At the end of the study, all the data
streams were fused, pre-processed, and
analyzed as described in this paper.

The following exclusion criteria were
used: age<18; dietary restrictions that would
prevent adherence to any of the study diets;
antibiotic use 1 month prior to or during
study; skin disease (e.g. contact dermatitis)
that precludes proper attachment of the
CGM; pregnancy; active neoplastic disease;
active neuropsychiatric disorder; myocardial
infarction or cerebrovascular accident in the
6 months prior; pre-diagnosed type I or type
II diabetes mellitus; HbAlc >= 6.5; or
unwilling / incapable of following
instructions.

1B. Age distribution with mean of 43.8 years
(SD 12.115).

1C. 28% of the study population had BMI >
25 and 18% had BMI > 30.

1D. 4% of the study population were
pre-diabetic with HbA1c% > 5.7.

1E. Waist-to-hip ratio distribution with mean
of 0.901 (SD 0.076) for men and 0.832 (SD
0.071) for women.
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Methods

As shown in Figure 1, we recruited 550 adults (66% female),
and tracked their food intake, sleep, activity, and glycemic
response for up to 2 weeks. 400 participants were Caucasian,
and of the remaining 150 participants, 37% were Asian, 33%
were Hispanic, and 30% were Black or Other. The study’s
Research Protocol was approved by an accredited IRB
all
participating in the study. All study participants were at least

committee and study participants consented to
18 years old. We obtained a stool sample at participation
enrollment, as well as a comprehensive questionnaire
describing their lifestyle, preferences, and health history. We
collected blood glucose measurements every 15 minutes
using a Continuous Glucose Monitor (CGM) sensor that
measures glucose levels within the range of 40 to 500 mg/dL

[Abbott 2016].

Study Meals

As described in Figure 2, participants were provided
pre-designed breakfasts, snacks, and lunches (“provided
meals”) over 14 days (“day 0” to “day 13”). After lunch,
participants were allowed to eat whatever they wanted (“free
meals”) without further guidance on the composition, and
day O consisted of only free meals. Provided meals
accounted for 66% of all meals and free meals 34%.

Both provided and free meals were recorded by all

participants during the entire study period, using a
smartphone app (Bitesnap). We obtained macronutrient and
micronutrient information from the smartphone app platform
for further analysis. Provided meals were pre-loaded into the
app. Free meals were loaded by users through selection of

custom dishes, ingredients, and quantities.

We asked the participants to not perform intense exercise 2.5
hours before or 2.5 hours after meals, to not start probiotics
or prebiotics, to not take vitamins or supplements during the
study (with a specific detail to avoid interfering substances
as defined in [Abbott 2016]), to not take over-the-counter
medication, and to inform the study coordinator if they are
prescribed antibiotics during the study.

In order to test our methodology across a range of diets and
to support a range of participant preferences, we provided
two diet types — omnivore and vegetarian/gluten-free — in
different phases of the study. We provided 104 unique
pre-designed meals — 71 unique pre-designed meals in the
omnivore diet in two separate waves, and 33 unique
pre-designed meals in the vegetarian/gluten-free diet in one
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wave. 140 participants signed up for the omnivore diet and
410 signed up for the vegetarian/gluten-free diet.

To distribute macronutrients across all the meals, we
designed the provided meals using a high (H) / low (L)
determination of each of the 4 macronutrients — carbs, fiber,
protein, and fat — as shown in Figure 2A. In this paper, we
use the terms carbs and carbohydrates interchangeably to
mean net carbohydrates, i.e. excluding fiber. High (H) and
Low (L) were thresholded based on the proportion of each
macronutrient and their daily recommended allowance. For
example, day 1 breakfast was high (H), low (L), high (H),
low (L), respectively, in carbs, fiber, protein, and fat. An
example meal plan is shown in Figure 2B; over the 14 day
period (day O consisted of only free meals), participants
were provided with 39 meals, including one glucose drink.
The distribution of macronutrients (Figure 2C) shows the
coverage of the provided meals within the space of
macronutrient proportions.

Figure 2B includes 3 distinct meals that were repeated on
days 1 and 8. A total of 9 distinct meals shown in Figure 2D
were repeated over the course of the 14 day diet schedules
(omnivore and vegetarian/gluten-free) to collect information
regarding intra-person variability; each repeat meal was
consumed twice by study participants. By design, these
repeat meals were generally high in just one or two
macronutrients.

Figure 2E shows the data from all study sources for a single
participant over two days, fused into a single visualization.
This visualization helped the study administrators to visually
inspect the data and ensure that data was properly captured
and lined up. Based on this visual inspection, we observed
that some of the CGMs malfunctioned with consistent lack
of signal, or in some cases the smartphone app meal
captured events were out of sync with the glucose curves,
which indicated that the participant did not capture the data
as instructed (at the point of meal consumption). In either of
these cases, we discarded the respective meal data.

Meal data was pre-processed as follows. After discarding
meals that were clearly from malfunctioning CGMs or from
erroneous data capture, we ended up with 27630 total meals,
with 18208 provided meals and 9422 free meals. All
provided meals were at least 2.5 hours apart (participants
were instructed). Free meals that were within 30 mins were
merged, and those within 90 minutes of each other
discarded. After all of this pre-processing, each participant
provided an average of approximately 50 meals.


https://doi.org/10.1101/641019

bioRxiv preprint doi: https://doi.org/10.1101/641019; this version posted November 22, 2020. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Microbiome Features

Stool samples from participants were processed using our
metatranscriptomic method [Hatch 2019] to yield raw
microbiome data features including KEGG gene orthologs

(or “KOs”) [KEGG] and microbial taxonomy. Our
cloud-based  bioinformatic  pipeline  performs read
QC/trimming, host read filtering, and taxonomic

classification at three taxonomic ranks (strain, species and
genus) through sequence alignment to a custom database of
more than 110,000 genomes. Functional assignments (KOs)
are obtained through alignment to the IGC [Li 2014] and
KEGG databases. For the samples provided by the 550
participants in this study, 6587 unique microbial KOs were
detected, a mean of 2941.9 per sample (s.d. 541.9); and 1047
unique species were detected, with a mean of 122.7 (s.d.
40.5).

Collections of these raw microbiome data features were
aggregated into custom microbiome scores designed to

capture the collective functional characteristics as described
in the literature. For example, the score microbiome balance,
is an aggregate assessment of overall ratios of active
beneficial and harmful microbes, as well as some diversity
metrics. This score is binary with a value of “Low” or
“Normal”. All microbiome scores are generated by taking
expression data as input, and applying an expert-designed
scoring algorithm developed at Viome [Perlina et al, in
prep.] to derive an overall activity level.

Metabolic and signaling pathway activities are scored using
expression levels of genes encoding specific protein
functions (KEGG mappings are used primarily), compared
with a reference cohort of samples supplied by Viome
customers. Scores measure the quantity and expression
levels of specific KEGG gene orthologs (KOs) selected due
to their specific directional enzymatic roles, pathway
topology, or significance in the functional literature. The
more key genes expressed, and the higher their expression
levels, the higher the resulting score.
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Description Net Carb (g) | Fiber (g) | Protein (g) | Fat (g)
Bagel, Eggs, Mango 71 7.9 213 10
Rice, Avocado, Apple 62.4 18.9 8.5 29.8
Applesauce, Grapes, Banana 52.8 5.8 1.8 0.5
Pea Protein, Mango, Banana 46.8 54 26.3 2.6
Quinoa and Veggies, Lentils 36 16.5 17 2
Tortilla, Almond Butter 25 5 9 20.5
Grain Bread, Chicken 24 6 24 8
Celery, Hummus 5.4 2.6 2.7 2.7
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Figure 2: Study meal design and content

2A. Percentage of each meal category within all 18,000+ provided meals. Categories were defined using proportions of Carbs
H/L), Fiber (H/L), Proteins (H/L), and Fats (H/L).

2B. In this omnivore diet example, meals are shown for several of the provided macronutrient groups (carbs - fiber - protein - fat).
Meals with similar composition “types” were distributed across the schedule, and schedule days 1 and 8 were repeated meal days.

2C. Macronutrient proportions of all 71 unique pre-designed omnivore meals (top, blue), all 33 unique pre-designed
vegetarian/gluten-free meals (middle, blue), and all free meals (bottom, red). Provided meals account for 66% of all meals, and
free meals 34%.

2D. Macronutrient information for the 9 “repeat meals” which were consumed twice by study participants. Actual servings were
adjusted based on the participant’s basal metabolic rate (BMR).

2E. Data collected for a single participant over 2 days (out of 14). Each row is a single day. The blue curve is the CGM reading
collected every 15 mins. Vertical bars are meal events, showing carbs proportion (blue), fat proportion (yellow), and protein
proportion (pink). The user interface also visualizes a picture of the meal and the nutrient details. Grey bars represent light and
deep sleep. The red histogram next to sleep bars is the tracked physical activity.
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Results

Meal Effects

For the remainder of our analyses we look at incremental
area under the curve (1AUC), a standard assessment of
PPGR ([Cheng 2018]; [Wolever 1986]). We define this as
the integrated area under the CGM curve over 120 minutes,
relative to the baseline CGM measured at the time of the
meal, i.e., the difference between the arca above baseline
and area below baseline. Note that this measurement can be
negative due to decline in blood sugar level below the
baseline over time, especially after activity, and due to noise
from the measurement device. The actual iAUC values for
all meals, the repeated meals from Figure 2D, and the
glucose drink are shown in Figure 3A.

Figure 3B was constructed after modeling iAUC with
standardized macronutrient values (i.e., z-scores). Linear
regression of iAUC on all four of the standardized
macronutrients was performed at each timepoint after the
meal. The plot shows the learned weights for each of the
standardized macronutrients at each of these timepoints, and
this reveals
macronutrient effects. Meals with more carbohydrates led to
increased postprandial glucose (PPG), peaking 45 minutes

the magnitude and time-course of the

after the meal, while meals with more fiber led to a
diminished and delayed PPG. Protein and fat suppress and
delay the response as shown.

Figure 3C illustrates the variability in responses to a single
meal, for all meals that were repeated within the provided
diet (Figure 2D). Intra-person variability is the difference in
a participant’s response to a single meal when eaten on two
occasions.

Predictive Model Development and Evaluation

In this section we first present a linear multilevel

mixed-effects or hierarchical model [Gelman 2007] of

PPGRs based on the data described above. The linear model

to provide a concise description of the
between

allows us

relationships nutrients, anthropometrics,
microbiome activity, and PPGR. Additionally, it allows us to
derive significance statistics testing the hypotheses that each

predictor is relevant in the determination of the PPGR.
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Importantly, the inclusion of random effects captures
individual variation in PPGR due to unobserved factors
(unknown properties of the individual, meal,
measurement devices) that may affect the outcome.

or

Including random effects is essential in order to derive
conservative hypothesis tests of both the relevance and
magnitude fixed effects,
repeated-measures design where each person and each meal

of our especially in a
provide many data points. Our experimental design calls for
a multilevel model because of this repetition; each PPGR
observation is at a lower level nested within one person and
within one meal (higher levels), in a crossed or fully
factorial experimental design (see Figure 4A). For example,
without the multilevel model we could not conclusively test
the importance of any variable that is constant across all data

taken from one person, such as microbiome features.

Model development was performed using the Ime4 package
in R [Bates 2015]. The model was built incrementally. In the
first pass, we determined appropriate transformations for the
nutritional and anthropometric variables by visualizing the
relationship between each predictor and the iAUC. The
effect of carbohydrates appeared to be well-described by the
square root transformation, while other predictors were left
untransformed. We then fitted a model of these nutritional
and anthropometric predictors as fixed effects, and random
intercepts and slopes allowing the nutritional effects to vary
between people and the anthropometric effects to vary
between meals. Likelihood ratio tests showed no evidence
for any random slopes of anthropometrics by meal (i.e.,
responses to all meals are similarly influenced by the
participant’s age, BMI, etc).

As the largest effects were associated with carbs, in the
second pass we introduced interactions between that and all
other nutrients as fixed effects, and with random slopes by
participant. Based on visual inspection of their relationship
with iAUC, we also introduced fixed effects of two
response-level “context” measurements, minutes of activity
during the 2 hours following the meal and minutes of sleep
during the 3 hours before the meal. We removed effects not
significant by likelihood ratio test at p<.05.
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Figure 3: Overview of postprandial glycemic response data

3A. iAUC values (in mg/ dl-h) for all meals, provided and free (red bar); the 9 repeated meals from Figure 2D, (blue bars); and
the glucose drink (green bar). Boxplots show the interquartile range; whiskers cover the middle 95th percentile.

3B. Marginal effect of macronutrients on glucose response over time, across all meals, across all participants. Each timepoint is
a linear regression of iAUC on all four standardized macronutrients.

3C. Inter- and intra-person variability for 9 repeated provided meals. X axis is the mean absolute difference in iAUC. Points
indicate the mean absolute difference in response between two consumptions of the meal by one person (green), and mean
absolute difference in response between all pairs of different people (blue). Bars indicate standard error. Y axis is in descending
order of difference between inter-person and intra-person variability.

3D. Examples of individual variation in glycemic response. Ingestion of two of the repeated meals (blue and green lines) result
in opposite blood glucose response in two participants (top). Ingestion of two free meals results in opposite blood glucose
response in two participants (bottom).

3E. Relationships between anthropometric characteristics and per-participant average iAUC across all meals (provided free).
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In the third pass, we introduced fixed effects of our
microbiome features, a number of expert-designed scores
measuring the activity of crucial metabolic pathways and
functions (see discussion section below). We determined a
candidate set of scores to add to the model by predicting
participants’ average iAUC from each score using t-test
(binary) or regression (continuous). 15 scores showed a
significant association taken alone and were tested in the full
model. After controlling for all other predictors, 6 remained
significant or marginally significant.

The final model fixed-effect coefficients are displayed in
Figure 4B. Positive coefficients indicate a greater predicted
glycemic response. All predictors were significant by
test at p<.05, except for glutamine
production pathways (p=.08) and the interaction between
tyrosine metabolizers and carbs (p=.06) which are kept in

likelihood-ratio

this model as suggestive, and do not substantially affect the
estimation of other coefficients.

Several of the significant predictors were microbiome
scores. One of the scores, named microbiome balance, is an
aggregate assessment of microbiome balance quantifying
overall beneficial and harmful activities (based on the
literature), as well as some diversity metrics. This score,
when “Low,” showed a negative association with glycemic
response. Two other scores are quantified pathway activities
representative of overall activity levels of a given set of
microbial pathways.

The fucose metabolism pathways activity score considers
expression levels of all the genes that encode enzymes
known to carry out biochemical reactions that result in
processing and catabolic conversions of fucose — a glycan
that microbes may obtain from the host’s gut lining mucosal
layer, or food components. This quantitative score showed a
positive association with glycemic response.

The indoleacetate production pathways activity score
considers expression levels of all the genes that encode
enzymes known to carry out biochemical reactions that
result in production of indole-acetate (or indole acetic acid,
IAA). This binary score, when “High,” showed a negative
association with glycemic response.
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The marginally significant score of glutamine production
pathways implies higher glycemic response when “Low.”
The score is derived with the same approach as the
indoleacetate score, and assess the levels of activity of
various pathway axes leading to microbial production of
glutamate (or glutamic acid).

Microbial scores for tyrosine and fructose metabolizers are
based on functional groups of active microbes known to
metabolize tyrosine and fructose, respectively. Tyrosine
metabolizers, when “Low,” are directly related to elevated
PPGR. Fructose metabolizers, when “Low,” show an inverse
relationship to glycemic response.

Figure 4C compares different approaches to predicting
iAUC. The first two plots show single predictor models
(calories or carbs). We also present predictions from the
fixed-effect part of our model after zeroing out certain
components. Using all nutrient predictors achieves a similar
fit to using the square root of carbs alone (both R=.41, not
pictured). Including the microbiome features yields a small
but significant improvement in fit (R=.42, not pictured), and
adding the other fixed effect predictors (age, BMI, sleep,
activity, microbiome) improves the fit further (R=.45, Fig.
4C bottom-left). Finally, the full model including random
effects (best linear unbiased predictions) fits the data very
well (R=.77, Fig. 4C bottom-right).

Figure 4D (left) shows the influence of age on the modelled
relationship between carbs and glycemic response. Figure
4D (right) illustrates the extent of modeled individual
differences in this relationship, taking into account all
predictors. Two hypothetical meals A and B (similar to
repeat meals from Figure 2D with carbs approximately 25¢g
and 50g respectively) are shown to illustrate that two users
(blue and red lines) have the opposite glycemic responses
(1AUC of 14 & 20 vs iAUC of 37 & 27 respectively) due to
the crossover of their iIAUC response lines between the two
meals — this effect was shown in Figure 3D using the raw
data.
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Figure 4. Models for predicting PPGR

4A. Nesting of predictors in our repeated-measures crossed experimental design. Plates (boxes) indicate repetition: e.g., there is one measurement of carbs,
protein, fiber, fat for each meal. Arrows indicate the possibility of dependence: here, PPGR is estimated as a function of all other variables. 4B. Fixed effect
estimates for all predictors included in the final model. Continuous predictors are standardized (mean is zero, units are standard deviations), meaning the
expected response changes by the value of the coefficient when the predictor changes by one standard deviation. All microbiome scores except ficose are
binary scores, meaning the coefficient is the difference in expected response between the two levels of the score. Error bars show standard error of the estimate.
4C: Actual glycemic response (1IAUC) against (a) calories, (b) carbs, (c) predictions from the model including all fixed effects (standard linear regression), and
(d) the fit of the full mixed-effects model. 4D. (left) Model predictions as a function of carbs and age, holding all other predictors at the baseline. (right) Model
predictions as a function of carbs for 10 randomly sampled people, taking into account all person-level fixed and random effects and holding all other nutrient
and context variables at the baseline. Two users are highlighted (red and blue) to draw attention to the flip in their predicted response to the two example meals
A & B annotated in yellow. 4E: Actual vs predicted iAUC for a gradient boosting machine (GBM) model. Performance shown is on the best test fold across 5
random splits, with data from 82% of the users used to train and 18% held out for evaluation.
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A model optimized for prediction accuracy over
explanation

As described above, mixed effects linear models are
valuable because they are easily interpreted and allow
statements about the statistical significance of predictors. In
this section we present another model for the same data
which does not offer these benefits but achieves greater
predictive accuracy due to its richer modeling framework.
This is a gradient boosting machine [Chen 2016] built on the
same predictors already discussed as well as a number of
additional features. These encompass the microbiome
(activity of individual organisms and genes), nutrients
(weight of meal; subtypes of carbs and fats; micronutrients;
specific compounds like caffeine and alcohol), and context
(more detailed representations of sleep and activity).
Following [Zeevi 2015] we also add two further predictors
encoding prior blood glucose levels: the CGM reading
immediately before the meal, and the slope of the linear
change in CGM readings over the previous 90 minutes.
After removing predictors that are low variance, highly
correlated with each other, or not correlated with the

outcome, a total of 1446 were included in the model.

Data from 82% of users was used to train, with the data from
the remaining 18% held out for evaluation. Hyperparameters
controlling learning rate, number of trees and tree depth
were estimated using cross validation on the training set.

Averaging across 5 such random train/test splits of the data,
the model achieves R=.80 (R?=.64) on training data, and
R=.64 (R’=.40) on held-out test data. Performance on
training and test data is shown in Figure 4E.

Discussion

We set out to study the variation of glycemic response based
on individual differences, especially differences in gut
microbiome activity obtained via the metatranscriptomic
method for the first time. We made a few key design choices
for the study, including (a) 14 days of monitoring, (b)
multiple diet types — omnivore and vegetarian/gluten-free,
and (c) proportion  (66%)
(pre-designed) meals.

a large of “provided”

The number of provided meals (104) is considerably larger
in our study compared to previous studies (e.g. [Zeevi
2015]; [Mendes-Soares 2019] had only 4 standardized
meals). This design allowed us to get more precise readings
of consumed meals rather than entirely depending on the
smartphone diet tracking app. This choice also ensures that

Page 10

our data allows us to quantify individual PPGR differences
between people in response to the same food, reducing the
risk that observed differences reflect differences between
participants’ diets. Secondly, as shown in Figure 2A, we
wanted to design a diet plan that provided broad coverage of
the space of macronutrient proportions (carbs, fiber, protein,
fat) with the intention of teasing out the independent and
interacting effects of the macronutrients. And finally, we
needed more control of meals since we also wanted to study
the effect diet types:
vegetarian/gluten-free (this is ongoing work, not reported
here).

of multiple omnivore and

It is evident from our data that accounting for individual
differences is crucial in providing a full description of
PPGRs. We designed 9 specific meals, each of which was a
combination of food staples (Figure 2D), that were
consumed twice by all participants. While intra-person
variability for a given meal is substantial (Figure 3C, green),
this variability is small relative to the infer-person variability
for the same meals (blue). We can conclude that while many
factors affect PPGRs, some of these factors are individual
differences which must be accounted for by differences
between people and their lifestyles, not properties of the
meal alone. The two meals where intra-person variability is
close to inter-person variability are meals that contain little
to no carbohydrates.

Relationships between iAUC and phenotype and food
features

We see the expected relationship between age and iAUC in
Figure 3E, first panel. The relationship between iAUC and
BMI / waist-to-hip ratio (Figure 3E second and third panels)
is the opposite of that previously reported in studies such as
[Zeevi 2015]. We hypothesize that this may reflect the
self-reported good health and high exercise rate within this
study population. We see the expected increase in average
iAUC with HbAlc in our study population (Figure 3E,
fourth panel). However, in our analysis there is no
significant effect of HbAlc on iAUC after controlling for
other predictors. This may be because the study population
was selected for HbAlc in the normal range (< 6.5).

As expected, the bulk of variation in the response is
explained by the amount of carbs ingested, and by
interactions with fat content in food and other factors that
modulate the effect of carbs. Increased fiber resulted in
overall lower PPGRs, and while increased fat had little
marginal effect by itself, it interacts with carbs to suppress
the effect of ingested carbs on the PPGR. The plot of the
time-course of this effect in Figure 3B suggests this may
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happen because fat and protein flatten and delay the
digestion of carbs, pushing some of the PPGR out of the 2
hour window considered here ([Franz 1997]; [Wakhloo
1984]). Protein has a numerically negative effect on iAUC
but is not significant after controlling for other predictors, so
was removed from the final model. Older people had higher
PPGRs, and also higher PPGRs per unit of carbs ingested
(Figure 4D). Activity after meal consumption as well as
sleep immediately before eating both resulted in lower
PPGR to carbs, which is consistent with literature on
metabolic effects of circadian rhythms [Van Cauter 1997].

The fact that the PPGR is better predicted by the square root
of carbs than untransformed carbs is reminiscent of a
standard model of gastric emptying in which the volume of
food passing from the stomach per unit of time is linear in
the square root of its volume [Hopkins 1966].

Relationships between iAUC and microbiome features
The significant microbiome features related to prediction of
postprandial glycemic response were microbiome balance,
fucose metabolism pathways, fructose metabolizers, tyrosine
metabolizers (marginal), indoleacetate production pathways,
and glutamine production pathways (marginal). Of these,
fucose, indoleacetate, and tyrosine (marginal) scores interact
with carbs, indicating that the microbiome or properties
correlated with the microbiome affect the processing of
carbs as well as leading to an overall difference in baseline
blood sugar.

The microbiome balance score was one of the significant
features in predicting glycemic response. Low microbiome
balance scores usually result from either an imbalance of
relative activities of beneficial vs. harmful microbes or from
lower quantity and diversity of microbial organisms. The
relationship of suboptimal overall gut microbiome and
higher PPGR is in line with the current literature [Karlsson
2013; Larsen 2010; Vrieze 2012] implicating the role of gut
health in glycemic regulation.

The fucose metabolism pathway score showed a direct
relationship with PPGR. Fucose is a sugar molecule that
various microbial organisms can use as an energy source
[Chen 1987]. When other carbohydrate sources are not
available, gut microbiota can switch to using the fucose that
can be obtained from the host’s gut mucosal lining. This
process is often carried out by microbes known as mucin
degraders, such as certain species of genus Ruminococcus
[Crost 2016]. We therefore hypothesize that higher fucose
consumption activity, as reflected by the microbiome
pathway score, may be associated with microbiomes of

Page 11

those individuals who are either more likely to fast or whose
internal ecosystem and overall body state resembles the
conditions of fasting or calorie deprivation. This may
explain its association with higher PPGR. More research is
needed establish
metabolism of gut sugars and the host’s tendency to show
higher glucose spikes in the blood after meals.

to relationships between microbial

The indoleacetate production pathways score incorporates
the role and significance of expressed genes in the context of
microbial indoleacetate production. The algorithm takes all
the known pathway axes that ultimately lead to microbial
production of compounds of type indole acetic acids (IAAs)
and scores them using gene expression as input data. In the
case of indole acetate production, the result shows that when
such pathways score “High” in activity, the glycemic
response to the given food is lower. This is consistent with
known anti-inflammatory properties of IAA [Krishnan 2018;
Whitfield-Cargile 2016]. Inflammatory activities in the gut
and their consequential potential to cause systemic
low-grade inflammation are implicated in the development
of Type 2 Diabetes and other metabolic disorders [Gonzalez
2018; Tuomainen 2018]. Moreover, there are direct
implications of [AAs in glycemic response, and some
findings suggest hypoglycemic action of indole-3-acetic acid

in diabetes mellitus [Mirsky 1956].

Indoles and indoleacetate are beneficial products of protein
fermentation, and tryptophan metabolism pathway products
particularly [Russell 2013]. In one study, intraperitoneal
administration of indole-3-propionic acid, indole-3-butyric
acid, and indole-3-acetic acid were shown to be associated
with hypoglycemia in normal and alloxandiabetic mice,
while L-tryptophan and kynurenic acid had no effect
[Silverstein 1966].

The interpretation we offer here is dependent on the
individual’s microbiome function. If a given person’s
microbiota mainly shows ability to convert tryptophan to
beneficial indoles and indole-actetate molecules capable of
reducing inflammation and glycemic effects of foods, then it
may be of benefit to recommend tryptophan sources (in the
form of food or supplement) to such people. On the other
hand, if tryptophan is used by the microbiota to produce
more of the pro-inflammatory triggers, then such action may
not be suitable for mitigating glycemic response or
inflammation in general.

Tyrosine and fructose metabolizer scores group active
microbes by functional characteristics. In our studies we
have observed that active functional microbial groups reflect


https://onlinelibrary.wiley.com/doi/pdf/10.1002/1097-0142(196601)19:1%3C127::AID-CNCR2820190114%3E3.0.CO;2-5
https://doi.org/10.1101/641019

bioRxiv preprint doi: https://doi.org/10.1101/641019; this version posted November 22, 2020. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

the host’s habitual diet. Hence, “Low” tyrosine metabolizers
may suggest a diet that is low on protein sources of tyrosine.
We also hypothesize that the inverse relationship between
the fructose metabolizers score and PPGR may be due to a
diet that is low in fructose, or other carbohydrates that serve
as metabolic precursors of fructose. It is not yet clear how a
diet that is rich in fructose or deficient in tyrosine may
influence glycemic response, and more studies are needed.

Glutamine production pathways score, when “Low,” showed
a direct relationship with higher PPGR. Microbial glutamine
production has not been directly linked to glycemic response
in humans. However, glutamine is considered an important
nutrient for gut health and has been included in various
supplements used by clinical healthcare practitioners to
prevent or heal “leaky gut” [Kim 2017, Rao 2012]. More
research is needed to understand the molecular mechanisms
that may be responsible for higher glycemic response to
food in individuals with low microbial glutamine production
activity in the gut.

The microbiome features revealed by our glycemic response
model may influence PPGR directly or indirectly. Although
it is challenging to delineate causal mechanisms, there may
be functional patterns that connect the significant scores
health,
inflammation. Inflammation and stress response may be
implicated in elevation of blood glucose (either due to
cortisol pathway or other mechanisms). Knowing which

with  gut intestinal  barrier integrity, and

foods may elicit higher personal PPGR can offer valuable
guidance in diet selection. However, to intervene on the root
cause of glycemic response, specific mechanisms connecting
nutrients to the gut microbiome and to inflammatory and
glycemic response need to be taken into account. We seek to
confirm and validate these mechanisms. An understanding
of which microbiome features are significant will pave the
path to precise personalization of food and supplement
recommendations.

Modeling methods and model evolution

The multilevel mixed effects model presented first in the
previous to Dbetter
understand the incremental effects of the significant features,
especially the functional gut microbiome activity features.
We are not aware of any prior literature that demonstrates

section was deliberately chosen

the statistical significance of the microbiome in the context
of a predictive model of PPGR. Prior studies [Zeevi 2015]
using only ensemble methods such as gradient boosting
machines represent the state of the art in accurate prediction
of PPGR (which we also show in Figure 4E). These models
suffer from difficulty of

interpretation, including
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determination of which features significantly contribute to
the predicted outcome.

We are in the process of increasing the generalizability of
by further data
underrepresented subpopulations such as pre-diabetics,
people reporting poor overall health, and older participants.
With the goal of continuous improvement, we will rebuild
and revalidate our model based on this new expanded data.
The current paper provides a first snapshot of the collected
data, and we will use the additional data to consolidate the
current model, as well as potentially surface new relevant

our findings collecting from

predictors. Finally, we also plan on validating the model on
an unseen cohort, and performing a blinded randomized
controlled dietary intervention based on this predictive
model to look for improvements in the glycemic response as
well as alterations to the gut microbiota.

Conclusions
Most significantly, this paper makes the following
contributions:

e Demonstrates for  the first time  that

metatranscriptomic activity of the gut microbiome
contributes to individual variation in glycemic
response among adults.

Suggests new microbial features that may help
uncover molecular mechanisms of glycemic
control.

Demonstrates the statistical significance of all
features using a multilevel mixed-effects regression
model where fixed effects represent measured
properties and random effects account for further
variation. We also present a gradient boosting
machine for maximizing predictive accuracy.
Demonstrates that glycemic response is driven by
the properties of an individual in addition to the
food’s macronutrient content, measured with 104
unique pre-designed meals within omnivore and
vegetarian/gluten-free diet types and within a

multi-ethnic population.
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