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Abstract

Many animal studies have reported an association between melatonin suppression and 

the disturbance of metabolic responses; yet, few human studies have investigated bright 

light effects on metabolic and hormonal responses at night. This study investigated the 

impact of light on plasma hormones and metabolites prior to, and after, an evening 

meal in healthy participants. Seventeen healthy participants, 8 females (22.2 ± 2.59 years, 

mean ± S.D.) and 9 males (22.8 ± 3.5 years) were randomised to a two-way cross-over 

design protocol; dim light (DL) (<5 lux) and bright light (BL) (>500 lux) sessions, 

separated by at least seven days. Saliva and plasma samples were collected prior to 

and after a standard evening meal at specific intervals. Plasma non-esterified fatty acid 

(NEFA) levels were significantly higher pre-meal in DL compared to BL (P < 0.01). Plasma 

glucose and insulin levels were significantly greater post-meal in the BL compared to 

DL session (P = 0.02, P = 0.001), respectively. Salivary melatonin levels were significantly 

higher in the DL compared to those in BL session (P = 0.005). BL at night was associated 

with significant increases in plasma glucose and insulin suggestive of glucose intolerance 

and insulin insensitivity. Raised pre-prandial NEFA levels may be due to changes in 

insulin sensitivity or the presence of melatonin and/or light at night. Plasma triglyceride 

(TAG) levels were the same in both sessions. These results may explain some of the 

health issues reported in shift workers; however, further studies are needed to elucidate 

the cause of these metabolic changes.

Introduction

Artificial light exposure at night has become commonplace 

throughout the developed world (1, 2). Light has been 

linked to various complex mechanisms such as the 

synchronisation of the circadian system (3). Circadian 

rhythms are seen in any biological processes that display an 

endogenous oscillation of about 24 h. They are generated 

by the suprachiasmatic nuclei (SCN) located in the anterior 

hypothalamus and influenced by external cues called 

zeitgebers (commonly daylight). Melatonin is considered 

the classical phase marker for assessing the timing of the 

mammalian biological clock. The SCN drives the daily 

rhythms in hormone concentrations such as insulin, 

glucagon, corticosterone (4, 5, 6) and enzymes involved 

in lipid and glucose metabolism, such as glucose-6-

phosphate dehydrogenase (7, 8). Therefore, disruption of 

circadian coordination may be manifested by endocrine 

imbalances (9), incidence of obesity (10) and type 2 

diabetes (11, 12). This raises a controversial issue as to 

whether aberrant light exposure may influence metabolism 

by changing the time of the circadian system (13).  
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It has been reported that blood glucose increases during 

light exposure and decreases during darkness in rats (14, 

15). Others have reported the melatonin-induced inhibition 

of insulin secretion via cyclic adenosine monophosphate 

(cAMP) and cyclic guanine monophosphate (cGMP), 

and the presence of melatonin receptors 1 (MT1) and  

2 (MT2) in pancreatic tissues of both rats and humans 

(16). Additionally, acute melatonin administration in 

healthy women has been reported to impaired glucose 

tolerance in both the morning and evening (17). The 

impact of melatonin administration on lipid metabolism 

has been demonstrated in experimental animals (18, 19) 

and humans (20, 21). In addition, melatonin has been 

reported to influence insulin (16) and glucagon (22), which 

in turn affect enzymes involved in lipid metabolism such as 

hormone-sensitive lipase (HSL) and lipoprotein lipase (LPL).

A majority of the previous studies investigating the effect 

of light on hormone and metabolic responses have either 

been carried out on experimental animals (14) or under-

restricted conditions in humans such as constant routine 

(16, 23, 24) including the administration of exogenous 

melatonin (17, 21). The aim of this study was to investigate 

the impact of broad spectrum bright light exposure (>500 

lux) on healthy young participants prior to and after a late-

evening meal. The hypothesis being that a single night of 

light exposure would be associated with changes in glucose 

tolerance, insulin sensitivity and lipid profiles. The findings 

could have health implications for individuals with a 

nocturnal lifestyle including nightshift work.

Participants and methods

Recruitment

All procedures received a favourable ethical opinion from 

the University of Surrey Ethics Committee (UEC/2013/93/

FHMS) and were conducted in accordance with the 

Declaration of Helsinki (1975) as revised in 1983 and 

conformed to international ethical standards. Volunteer 

information was coded and held securely in compliance 

with the Data Protection Act, UK (1998). All participants 

gave written informed consent after full explanation of 

the purpose and nature of all procedures involved.

Participants and screening

Seventeen healthy participants, 8 females (22.2 ± 2.59 years; 

mean ± S.D.) and 9 males (22.8 ± 3.5  years) were recruited 

from students and staff at the University of Surrey. The two 

genders were matched for age and body mass index (BMI) 

(Table 1). Participants were all non-smokers and taking no 

medication except for mild analgesics. All females were on 

oral contraceptive pills. Participants had not crossed more 

than two time zones and/or worked night shifts during 

the month before the study. All participants completed 

screening questionnaires including Pittsburgh Sleep Quality 

Index (PSQI), Horne-Östberg (HÖ) and Munich chronotype.

Pre-laboratory measurements

All participants maintained a standard self-selected regular 

sleep–wake cycle (nocturnal sleep duration of 6.5–8 h, 

with sleep onset between 23:00 h and 01:00 h) for at least 

7 days before the in-laboratory sessions, as confirmed by 

actigraphy (AWL, Cambridge Neurotechnology, UK) and 

sleep diaries (Table 2). 24-h prior to the laboratory sessions, 

participants were required to refrain from caffeinated 

drinks, alcohol, excessive exercise and medicine intake. 

In addition, participants performed a 48-h sequential 

urine collection to measure 6-sulfatoxymelatonin 

(αMT6s), the major urinary metabolite of melatonin, via 

radioimmunoassay (Stockgrand Ltd., University of Surrey, 

Guildford, UK). The acrophase of 6-sulfatoxymelatonin 

was determined by cosinor analysis, enabling meal intakes 

(supper) to be individually scheduled to occur on the rising 

phase of each participants’ endogenous melatonin rhythm.

Laboratory session

All participants were randomised to a two-way cross-over 

design protocol; dim light and bright light. All study 

sessions were held at the Clinical Investigation Unit 

(CIU), which was equipped with overhead light control. 

During the dim light session, lighting levels were <5 

Table 1 Participant demographics.

 Male (n = 9) Female (n = 8) P (M vs F)

Age (year) 22.3 ± 3.6 22.6 ± 2.2 0.84
Body weight (kg) 68.4 ± 7.9 63.8 ± 8.5 0.26
Height (m) 1.8 ± 1.7 1.7 ± 0.1 0.14
BMI (kg/m2) 22.9 ± 2.5 22.7 ± 2.2 0.88
Caffeine (week) 10.1 ± 6.2 11.4 ± 9.1 0.74
Alcohol (week) 2.8 ± 2.3 3.8 ± 4.2 0.56
PSQIa 3.3 ± 1.2 4.1 ± 1.5 0.24
HÖa 51.2 ± 8.1 52.4 ± 10.9 0.81
MCTQa (h) 4.7 ± 1.2 4.9 ± 1.1 0.87

Values are mean ± S.D., P values were calculated by 2-tailed unpaired test.
aValues given are those obtained during the screening session.

BMI, body mass index; HÖ, Horne–Östberg questionnaire; MCTQ, Munich 

Chronotype Questionnaire; PSQI, Pittsburgh Sleep Quality Index.
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lux and in the bright light session, lighting was >500 

lux between 18:00 h and 06:00 h the next day (Fig.  1). 

Participants were randomly coded alphanumerically 

divided into groups A and B using the sealed envelope 

method. Group A attended BL session and then the DL 

session, whereas group B completed the sessions in reverse 

order. Participants were kept awake and semi-recumbent 

throughout the study session, except during visits to the 

toilet. A set breakfast was provided at 08:00 h, whereas 

lunch and supper (test meal) times were individualised 

on the basis of the acrophase time of urinary aMT6s. The 

fasting period between lunch and supper was 9–10 h. 

Participants consumed an isocaloric and non-carbonated 

evening meal at a time estimated to be within 30 min of 

endogenous melatonin onset (1066 kcal, 38 g protein, 

104 g CHO, 54 g fat, 7 g fibre) (Table 3).

Blood samples were collected hourly from 18:00 h 

until the evening meal; then, every 15 min for the first 

hour after the meal, then at 30-min intervals until the end 

of the session. In total, 22 blood samples were collected in 

each session from each participant for analysis of insulin, 

glucose, triglyceride (TAG) and non-esterified fatty acids 

(NEFAs). Saliva samples were collected every 30 min 

from 18:00 h to 06:00 h the following day for analysis of 

melatonin levels.

Light measurements

Light intensity was measured at 2 different positions 

horizontal level (direction of gaze) (n = 221; DL 1.06 ± 0.06 

lux, BL 305 ± 10.1 lux; mean ± S.E.M.) and vertical level 

towards the lights (n = 221; DL 1.21 ± 0.13, BL 552.7 ± 16; 

mean ± S.E.M.).

Spectral composition of the light source was 

measured using a R203 power radiometer at horizontal  

(DL 0.001 w/m2, BL 0.98 w/m2) and vertical level (DL 

0.0008 w/m2, BL 0.73 w/m2). The light source provided 

in both studies are fluorescent light, and the spectral 

composition of the light is shown in Fig. 2.

Assay procedures

Plasma glucose, TAG (Werfen Ltd, Warrington, UK) 

and NEFAs (Randox Laboratories Ltd, Crumlin, UK) 

were analysed by standard automated enzymatic 

spectrophotometric methods (ILAB600). The 

interassay coefficients of variation were less than 5% 

for glucose, NEFAs and TAGs. Plasma immunoreactive 

insulin was measured using radioimmunoassay 

(RIA) (Millipore). Salivary melatonin and urinary 

aMT6s were analysed using in-house RIAs (25, 26).  

The interassay coefficients of variation were less than 

10% for melatonin (control 1 = 6.5 pg/mL (6.7%), 

control 2 = 24.5 (6.7%) and control 3 = 49.6 pg/mL 

Table 2 Screening sleep and basal hormone and  

metabolite data.

 BL DL P

Sleep starta (h:min) 23:54 ± 00:14 00:18 ± 00:14 0.1
Sleep enda (h:min) 07:21 ± 00:10 07:35 ± 00:09 0.1
Sleep durationa (h) 06:37 ± 00:16 06:24 ± 00:14 0.5
% Sleep efficiencya 81.9 ± 2.8 78.06 ± 3.5 0.4
Sleep latencya (h:min) 00:35 ± 00:12 00:48 ± 00:12 0.5
Fragmentation indexa 26.4 ± 2.9 28.81 ± 3.4 0.5
Basal glucoseb (mmol/L) 4.9 ± 0.3 4.8 ± 0.2 0.7
Basal insulinb (pmol/L) 107 ± 34 105 ± 28 0.9
Basal NEFAsb (mmol/L) 0.75 ± 0.1 0.91 ± 0.1 0.07
Basal TAGsb (mmol/L) 1.1 ± 0.1 1.2 ± 0.2 0.4
Basal melatoninb (pg/mL) 1.8 ± 0.4 2.6 ± 0.6 0.05

Values are mean ± S.E.M. Sleep parameters n = 15 hormone and metabolic 

basal data n = 17.
aValues are obtained from 7 days prior to BL and DL sessions. bValues 

represented the basal samples (T = −360 min) from each clinical session. 

Sleep parameters were analysed based on data obtained from sleep 

diaries and Actiwatch data. *P < 0.05.

Figure 1

Study protocol of BL and DL sessions. The schematic figure represents the study protocol for a participant with plasma melatonin onset at 22:30 h. All 

interventions (see key) were relative to each participants’ melatonin onset.
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(6.8%)) and insulin (control 1 = 100.3 pmol/L (10%), 

and control 2 = 332.2 pmol/L (9.5%)).

Measurement of insulin resistance

An index of fasting insulin resistance (HOMA-IR) 

and postprandial insulin resistance (HOMA-PP) were 

determined for the evening meal in both BL and DL 

sessions.

HOMA-IR was calculated using the HOMA calculator 

based on HOMA model 2 developed by Jonathan Levy (27).

HOMA-PP was calculated as the incremental area 

under the curve (IAUC) glucose (mmol/L  min) × IAUC 

insulin (U/L min).

This equation has been validated against the 

intravenous glucose tolerance (28).

Data and statistical analysis

A power calculation was performed using PS software 

(Vanderbilt University, Nashville, Tennessee, USA) with a 

power of 80% and a significance level 0.05 utilising NEFA 

data obtained from a previous pilot investigation. From 

this power calculation, ≥18 participants were required.

Urine aMT6s data were subjected to cosinor analysis 

(Dr D S Minors at the University of Manchester, UK), to 

ascertain calculated peak time of aMT6s (acrophase).

All data were checked for normality using D’Agostino 

Pearson omnibus normality test (Graphpad). The mean 

value plus the standard deviation (S.D.) and standard error 

of mean (S.E.M.) were calculated from individual data sets. 

All hormonal and metabolic data were subjected to three-

factor repeated measures ANOVA (condition, gender 

and time) followed by Tukey’s honest significance post 

hoc test to locate individual differences, using Statistica 

Statsoft (Tulsa, OK, USA). The trapezoidal rule was used to 

determine the total area under curve (TAUC). All hormone 

and metabolite data were analysed using TAUC, followed 

by 2-tailed paired Student’s t-test. The significance level 

was set at P < 0.05.

Results

Comparison of male and female participants

The mean age, body weight, height and BMI of 9 males 

and 8 females in this study were matched (Table  1). 

Caffeine and alcohol consumption over the two weeks 

prior to the study were not significantly different between 

male and female groups. Both genders were classified as 

neither morning nor evening types by the HÖ, and all 

reported a good sleep quality over a month prior to the 

study using the PSQI. Sleep parameters screened prior 

to BL and DL sessions are given in Table 2. Participants 

reported no significant difference in sleep prior to BL and 

DL sessions. No differences were observed in hormone 

and metabolic concentrations at the start of the each 

study session (Table 2).

Plasma levels prior to the test meal (T = 0)

Basal levels of plasma insulin, glucose, TAGs and NEFAs 

from samples collected immediately prior to the meal 

(T = 0) are shown in Fig.  3. Basal glucose and insulin 

showed no significant differences between BL and DL 

sessions. Basal NEFAs were significantly higher in DL than 

those in BL (P = 0.02). No significant difference was seen in 

basal TAGs between DL and BL (P = 0.81). Basal melatonin 

levels were significantly greater in DL than those in BL 

(P < 0.001) (Fig. 2).

Table 3 Carbohydrate, protein, fat, fibre and energy for 

each of the meals and overall composition of all three meals.

 

Meal (g)

Energy 

(kcal)

 

Protein (g)

 

CHO (g)

 

Fat (g)

Fibre 

(g)

Breakfast 627 15 98 16 14
Lunch 927 25 115 38 19
Test meal ‘supper’ 1066 38 104 54 7
Total 2620 78 317 105 40
% composition*  15% 59% 19% 7%

*Percentages were calculated proportionally from the total daily 

consumption.
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Figure 2

Fluorescent light composition.
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Hormone and metabolic responses prior to the meal 

(T-360-0)

There were no significant differences between BL 

and DL sessions in plasma glucose, insulin and TAGs 

concentrations prior to evening meal. Pre-evening meal 

NEFAs showed a significant increase in DL compared  

to that in BL session (P = 0.03). Similarly, salivary 

melatonin was significantly higher in the DL session 

(P < 0.001) (Fig. 4).

Postprandial hormone and metabolic responses

Postprandial plasma glucose and insulin responses 

to the test meal showed a significant increase in BL 

compared to those in DL (P = 0.01, P = 0.008), respectively. 

Salivary melatonin was significantly greater in DL than  

that in BL sessions (P < 0.001). There were no differences 

in postprandial TAGs responses after BL and DL  

sessions (Fig. 3).

Pre-prandial and postprandial hormone and 

metabolic responses (T = −360 to T = +330)

Graphical representations of the female, male and all 

participants during DL and BL sessions are shown in 

Fig. 3. Plasma insulin levels were significantly greater in BL 

than those in DL sessions (P = 0.001). Post hoc tests showed 

significant differences at +180, +210 and +270 min. 

Similarly, plasma glucose showed a significant increase in 

BL compared to that in DL sessions (P = 0.02). Post hoc test 

showed significant differences at +180 and +210 min after 

the meal. In contrast, there was a significant pre-prandial 

increase of plasma NEFA in DL session (P = 0.005). Post 

hoc tests showed the difference was directly prior to the 

evening meal (T = 0). Plasma TAGs showed no significant 

difference between the DL and BL sessions. All 4 plasma 

parameters showed significant effects of time, whereas no 

significant effects of gender were observed.

Salivary melatonin levels were significantly greater 

in DL than those in BL session (P < 0.001). Post hoc 

tests showed significant differences at pre-prandial and 

postprandial time points between −120 and +330 min. 

Both males and females show similar increase in salivary 

melatonin in DL compared to those in BL sessions, 

females showed higher levels of salivary melatonin than 

males although not significant (Fig. 4).

Total area under the curve

TAUCs for, insulin, glucose, NEFAs, TAGs and melatonin 

were calculated and are shown in Fig. 5. TAUCs for NEFAs 

showed a significant reduction in BL (290 ± 17 mmol/L min) 

compared to those in DL (350 ± 18 mmol/L min) sessions 

(P = 0.009). In contrast, a significant increase in TAUCs for 

plasma insulin and glucose were shown in BL compared 
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Figure 3

Plasma glucose (A), insulin (B), NEFAs (C), TAGs (D) and melatonin (E) levels (mean ± S.E.M.) prior to the test meal at time = 0 in all participants (n = 17) 

during DL ( ) and BL ( ) sessions. *P < 0.05, and ***P < 0.001.
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Figure 4

Plasma glucose (A), insulin (B), NEFAs (C), TAGS (D) and salivary melatonin (E) (mean ± S.E.M.) levels prior to and after a standard evening meal (time = 0 

red dotted line) during DL ( ) and BL ( ) sessions in males (n = 9), females (n = 8) and all participants (n = 17).
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to DL (P = 0.004 and P = 0.03), respectively. TAUC of 

plasma insulin was 129,119 ± 10,343 pmol/L min in DL 

and 109,875 ± 9817 pmol/L min BL, whereas TAUCs of 

plasma glucose were 3805.76 ± 60 mmol/L min in DL and 

3985 ± 73 mmol/L min in BL. No significant difference 

was observed in plasma TAGs responses. TAUCs showed 

a significant suppression of salivary melatonin in BL 

compared to those in DL sessions (P < 0.0001), and 

TAUCs were 3171 ± 530 pg/mL min in BL session and 

10,362 ± 1777 pg/mL min in DL sessions.

HOMA-PP and HOMA-IR

HOMA-PP and HOMA-IR are shown in Fig. 6. HOMA-PP 

was greater but not significant in BL (49,802 ± 6428) than 

that in DL (41,607 ± 6141) session. Similarly, HOMA-IR was 

higher, yet not significantly, in BL (1.2 ± 0.1) compared to 

that in DL (1.1 ± 0.1) sessions.

Discussion

Few studies have investigated the influence of light at 

night on plasma hormones and metabolites in healthy 

humans as a majority of the studies reported to have 

either been carried out on experimental animals (29) or 

under-restricted conditions in humans such as constant 

routine (16, 23, 30) or involved in the administration of 

exogenous melatonin (18, 20). To the author’s knowledge, 

this is the first study to investigate bright light exposure at 

night on hormonal and metabolic responses prior to and 

after a standard evening meal in healthy young individuals 

by exposing them to two light sessions: bright (>500 lux), 

equivalent to light the intensity in the workplace, and 

dim light (<5 lux) equivalent to candle light.

The salivary melatonin profile was significantly 

reduced by bright light exposure at night. This was 

expected as the light intensity delivered at the angle 

of gaze was 305 lux, and previous human studies have 

shown that 200 lux was sufficient to suppress salivary 

melatonin by 50% in healthy participants (31). In this 

study, a reduction of 62% in melatonin amplitude was 

observed in the BL session. The evening meal was targeted 

between 30 min and 1 h after estimated melatonin onset in 

both light sessions to ensure the presence of endogenous 

melatonin at the meal time. All participants showed the 

presence of endogenous melatonin at evening meal time 

in DL session. Our results indicate that salivary melatonin 

levels appear higher, but not statistically significant, in 

females than those in males under both light sessions 

agreeing with previously published research (32).

Plasma glucose responses were significantly elevated 

three hours after the meal in the BL session, confirmed 

by TAUC analysis. Insulin levels were significantly 

elevated after the meal in BL compared to those in the 

DL sessions. Raised glucose and insulin responses suggest 
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Total area under the curve (TAUCs) for glucose (A), insulin (B), NEFAs (C), TAGs (D) and melatonin (E) (mean ± S.E.M.) during BL  and DL ▬ sessions in all 

participant (n = 17). *P < 0.05, **P < 0.01.
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changes in glucose tolerance and insulin sensitivity. 

Calculation of HOMA-PP and HOMA-IR confirmed these 

findings although significance was not achieved. These 

results agree with rodent studies that showed decreased 

blood glucose and insulin in constant darkness (14, 15).  

Fonken and coworkers observed that male mice in 

constant light increased body mass with reduced glucose 

tolerance compared to those in a standard light/darkness 

cycle with similar food intake (33). It is important to 

note that rodents are nocturnal, whereas humans are 

diurnal mammals with reversed rest activity cycles 

and hormonal rhythms, including those important in 

metabolic regulation, except for melatonin, which peaks 

during the darkness phase in both (34). Our results are 

also in agreement with recent evidence observed in sleep 

deprivation (23, 35, 36) and circadian misalignment 

(37) such as in jet lag and shift work, which have shown 

an increase of postprandial glucose and insulin that 

denotes insulin insensitivity and failure of beta cell 

compensation (38). Reduced insulin sensitivity reported 

in sleep debt could be due to an altered balance between 

the sympathetic (SNS) and parasympathetic nervous 

system (PNS) (35, 38), which may influence beta cell 

activity indirectly via cortisol and epinephrine (35, 

39). High night-time cortisol has been reported to be 

associated with sleep loss and insulin resistance (40). 

Overstimulation of the SNS as a result of the wake-

promoting factor orexin (36) has been reported to result 

in increased glucose mobilisation and altered insulin 

sensitivity (41, 42). It has been suggested in human 

studies that consumption of nutrients at inappropriate 

times of day results in metabolic imbalances as a result 

of circadian desynchrony (37). In our present study, 

participants were sleep deprived in both sessions, and 

melatonin onset was not significantly different between 

BL and DL, indicating that postprandial changes obtained 

are unlikely to be due to sleep deprivation or circadian 

misalignment. The difference observed in glucose 

tolerance and insulin sensitivity could be due to the 

presence of melatonin in the DL session, as melatonin 

has been reported to inhibit insulin secretion in both rat 

insulinoma cells and pancreatic islets, thus influencing 

blood glucose (43, 44). Furthermore, light exposure 

during sleep deprivation in humans has been reported to 

increase insulin resistance compared to sleep deprivation 

in the darkness (45). The explanation being possible due 

to dysregulation of the SCN that coordinates peripheral 

organs and energy homeostasis, in addition to altered 

melatonin levels, which have been associated with 

increased insulin resistance in experimental animals 

(46), while melatonin secretion was inversely correlated 

with insulin in healthy humans (47). An increase 

in evening light exposure and a decrease in urinary 

6-sulfatoxymelatonin excretion have been associated 

with an increase in the prevalence of type 2 diabetes in 

elderly individuals (48). However, the effects of evening 

light exposure on glucose metabolism may be greater 

in the young compared to an older population due to 

reduced transmission of light through the lenses (49).

In contrast, a human study by Rubio-Sastre and 

coworkers gave exogenous melatonin prior to an oral 

glucose tolerance test (OGTT) in the morning and 

evening and resulted in raised insulin and glucose 

responses compared to placebo (17). This study conflicts 

with our results; however, this may be due to differences 

between the two study protocols. We utilised endogenous 

melatonin and a consumption of an evening meal, 

whereas Rubio-Sastre and coworkers administered a single 

dose of immediate-release melatonin and a drink of oral 

glucose. The sleep–wake cycle of participants in the Rubio-

Sastre study was not recorded, which could influence 

metabolite changes. Using a single dose of immediate-

release melatonin would saturate melatonin receptors 

with supraphysiological melatonin levels. Variability of 

absorption rates in oral glucose tolerance tests (OGTT) 

compared to our study that provide a standard evening 

meal could contribute to the result differences (17).

Pre-prandial plasma NEFA was significantly elevated 

in the DL session, which may be due to the physiological 

response to fasting itself. However, all participants had 

the same fasting period between lunch and the test 

meal during both sessions, and the main significant 

difference was observed just prior to the test meal 

(T = 0) when melatonin levels were already high in the 

DL. This potentially suggests the possible stimulatory 

effect of melatonin on glucagon (42). Other potential 

mechanism could be increased sympathetic action due to 

endogenous melatonin inducing HSL activity (50, 51, 52). 

It is suggested that the major activating factor for HSL is 
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sessions (n = 17).
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the absence of the inhibitory effects of insulin (53). No 

difference in plasma TAGs could be due to the absence of 

melatonin effects on LPL activity. Also, it is important to 

note that TAG levels normally take approximately 9 h to 

return to basal levels after a meal (54, 55, 56).

One of the limitation of this study was that 

postprandial response was only measured for up to 5 h 

after the standard evening meal, which does not provide 

a complete profile of postprandial TAGs. Future research 

needs to include a longer sampling period. Further 

hormonal analyses such glucagon and cortisol would 

be interesting to determine if NEFA changes were due to 

glucagon effects and to determine the role of cortisol in 

metabolic changes of glucose and insulin. The protocol 

used in this study can only explain changes due to different 

light sessions or endogenous melatonin action. A future 

study involving exogenous melatonin administration 

during light exposure would help to determine whether 

the metabolic changes seen are due to melatonin or other 

processes.

In conclusion, this is the first study to assess the 

influence of bright light exposure (room light) at night 

on metabolic and hormonal responses in healthy young 

participants. Significantly higher glucose and insulin in 

the BL session suggests glucose intolerance and insulin 

insensitivity. Elevated NEFAs level in the DL session prior 

to the meal could either be due to the stimulatory effects 

of melatonin on glucagon or the inhibitory effects on 

insulin, resulting in higher HSL activity. Our recent results 

could be due to light or melatonin or a combination of 

the two. These results support the idea that nocturnal 

lifestyle, such as in night shift work, is likely to be one 

of the risk factors to health in modern society, including 

diabetes. Further studies are needed to determine whether 

melatonin causes the present metabolic changes or other 

processes are involved.
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