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IMPORTANCE Selective serotonin reuptake inhibitor (SSRI) use among pregnant women is

increasing, yet the association between prenatal SSRI exposure and fetal neurodevelopment

is poorly understood. Animal studies show that perinatal SSRI exposure alters limbic circuitry

and produces anxiety and depressive-like behaviors after adolescence, but literature on

prenatal SSRI exposure in humans is limited andmixed.

OBJECTIVE To examine associations between prenatal SSRI exposure and brain development

using structural and diffusionmagnetic resonance imaging (MRI).

DESIGN, SETTING, AND PARTICIPANTS A cohort study conducted at Columbia University

Medical Center and New York State Psychiatric Institute included 98 infants: 16 with in utero

SSRI exposure, 21 with in utero untreatedmaternal depression exposure, and 61 healthy

controls. Data were collected between January 6, 2011, and October 25, 2016.

EXPOSURES Selective serotonin reuptake inhibitors and untreatedmaternal depression.

MAIN OUTCOMES ANDMEASURES Graymatter volume estimates using structural MRI with

voxel-basedmorphometry and white matter structural connectivity (connectome) using

diffusionMRI with probabilistic tractography.

RESULTS The sample included 98mother (31 [32%] white, 26 [27%] Hispanic/Latina, 26

[27%] black/African American, 15 [15%] other) and infant (46 [47%] boys, 52 [53%] girls)

dyads. Mean (SD) age of the infants at the time of the scan was 3.43 (1.50) weeks.

Voxel-basedmorphometry showed significant gray matter volume expansion in the right

amygdala (Cohen d = 0.65; 95% CI, 0.06-1.23) and right insula (Cohen d = 0.86; 95% CI,

0.26-1.14) in SSRI-exposed infants compared with both healthy controls and infants exposed

to untreatedmaternal depression (P < .05; whole-brain correction). In connectome-level

analysis of white matter structural connectivity, the SSRI group showed a significant increase

in connectivity between the right amygdala and the right insula with a large effect size (Cohen

d = 0.99; 95% CI, 0.40-1.57) compared with healthy controls and untreated depression

(P < .05; whole connectome correction).

CONCLUSIONS AND RELEVANCE Our findings suggest that prenatal SSRI exposure has an

association with fetal brain development, particularly in brain regions critical to emotional

processing. The study highlights the need for further research on the potential long-term

behavioral and psychological outcomes of these neurodevelopmental changes.
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T
he prescription of selective serotonin reuptake inhibi-

tor (SSRI) medications for pregnant women has accel-

erated over the past 30 years.1To someextent, this rise

may be attributable to increased awareness of the detrimen-

tal effects ofuntreatedprenatalmaternal depression (PMD)on

womenandchildren,2 alongwithearly studies failing todocu-

ment immediate effects of SSRI exposure in offspring (al-

though later rodent studies document postpubertal

alterations3). However, little is known about the association

between prenatal SSRI exposure and human fetal neurode-

velopment.

Serotonin (5-hydroxytryptamine [5-HT]) plays a vital role

in neurodevelopment. In the fetal brain, 5-HT signaling af-

fectscellproliferation,differentiation,neuronalmigration,net-

work formation, and synaptogenesis.4 The 5-HT transporter

iswidely expressed in the fetal brain in both serotonergic and

nonserotonergic neurons,5 thus providing a developmen-

tally transient target for SSRIs. Atypical serotonergic signal-

ing resulting fromprenatal SSRI exposuremayalter fetal brain

development and subsequent functioning.6

Animal studies support this idea. Perinatal SSRI expo-

sure in rodent studies is associatedwithdelayedmotor devel-

opment, reduced pain sensitivity, disrupted thalamocortical

organization, reduced dorsal raphe neuronal firing, reduced

arborization of 5-HT neurons, and altered limbic and cortical

circuit functioning.7,8Rodent studies also suggest behavioral

consequences of early-life SSRI exposure, including in-

creases in anxiety and depression-like behaviors in adult-

hood (eg, impaired stress response and grooming, decreased

play),3,9 and suggest that early perturbations in 5-HT signal-

ingmay be associated with neurodevelopment, giving rise to

atypical emotion-related behaviors later in life.

Literature on prenatal SSRI exposure in humans is lim-

ited andmixed. Studies havemost consistently reported that

prenatal SSRI exposure is associated with a shorter gesta-

tional period, lowerbirthweight, lowerApgar scores, andneo-

natal abstinence syndrome.10,11 Initial studies on longer-term

neurodevelopmental consequences have yieldedmixed find-

ings; some studies suggest increased internalizing and exter-

nalizing behaviors during early childhood,11,12 whereas oth-

ers fail to find such associations.13 However, consistent with

animal studies,3 a recent national registry study (including

>15000 prenatally SSRI-exposed offspring) found increased

rates of depression in early adolescence in youth with prena-

tal SSRI exposure.14

Brain imaging provides a window into neurodevelop-

ment, yet human infant and fetal imaging studies of prenatal

SSRI exposure are scarce. A recent electroencephalography

study found reduced interhemispheric connectivity and lower

cross-frequency integration in SSRI-exposed infants, suggest-

inguncouplingof frontal circuitry.15Two infantmagnetic reso-

nance imaging (MRI) studiesdocumentedchanges ingraymat-

ter (GM)andwhitematter (WM) tissueproperties inprenatally

SSRI-exposed infants (eg, altered fractional anisotropy of the

thalamostriatal GM and superior WM fascicule16 and in-

creased mean diffusivity in several major fasciculi17). Al-

though these studies suggest an association between prena-

talSSRIexposureandvariation in fetalbraindevelopment, they

areconfoundedbysamplecharacteristics (eg, inclusionofvery

preterm-born infants) or the lack of an untreated PMD com-

parison group.

Based on prior animal studies, we hypothesized that pre-

natally SSRI-exposed infants would demonstrate altered GM

morphologyandWMconnectivitywithin thecorticolimbic cir-

cuit. To test this, we used deformation-based GMmorphom-

etry anddiffusionprobabilisticWMtractography. Tomore ac-

curatelyassess theassociationbetweenprenatalSSRIexposure

and the infant brain, we considered the following methodo-

logic advances: 2 comparison groups (healthy controls [HCs])

and infants exposed to untreated PMD), optimization of im-

age analytics for the infant brain, and enhanced connectivity

measures.

Methods

Participants

Datawere collectedbetween January6, 2011, andOctober26,

2016. Participants (pregnant women, aged 18-45 years) were

recruited through obstetricians, midwives, and psychia-

trists. A total of 204mothers were recruited; 103 infants un-

derwent an MRI scan (eMethods and eTable 1 in the Supple-

ment). Group membership was determined after mothers

completed a prenatal mood and medication assessment (be-

tween 19 and 39weeks’ gestation). Mothers were assigned to

the SSRI group if they self-reported receiving an SSRI at some

point in their pregnancy. Sleeping, nonsedated infants under-

went anMRI sessionwhen theywere approximately 3.43 (SD

1.50) weeks of age. The New York State Psychiatric Institute

Institutional Review Board approved all procedures and par-

ticipants providedwritten informed consent. Participants re-

ceived financial compensation for their participation.

PMD and Psychiatric Symptoms

Groupmembership(PMDvsHC)wasdeterminedduringthepre-

natal assessment based on themother’s depression scores, as-

sessedvia theCenter forEpidemiological StudiesDepression19

scale (scores≥16wereconsidered indicativeofclinically signifi-

cantdepression).Womencompleted theSchedule forAffective

Key Points

Question Is prenatal exposure to selective serotonin reuptake

inhibitors associated with fetal brain development?

Findings In this cohort study including 98 infants, significant gray

matter volume expansion was noted in the amygdala and insula, as

well as an increase in white matter structural connectivity between

these same regions in selective serotonin reuptake

inhibitor–exposed infants, compared with infants exposed to

untreated prenatal maternal depression and healthy controls.

Meaning In line with prior animal studies, these multimodal brain

imaging findings suggest that prenatal selective serotonin

reuptake inhibitor exposure has a significant association with fetal

brain development.

Research Original Investigation Association of Brain DevelopmentWith Prenatal Exposure to SSRIs

E2 JAMAPediatrics Published online April 9, 2018 (Reprinted) jamapediatrics.com

© 2018 American Medical Association. All rights reserved.

Downloaded From:  by David Perlmutter on 04/11/2018

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamapediatrics.2017.5227&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapediatrics.2017.5227
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamapediatrics.2017.5227&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapediatrics.2017.5227
http://www.jamapediatrics.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapediatrics.2017.5227


DisordersandSchizophrenia (SADS), a semistructureddiagnos-

tic interview.18Owing to time limitations,20of the98mothers

withusable infantMRIdatadidnotcomplete theSADS (SSRI,2;

PMD, 5; andHC, 13). Postnatal depressionwas assessed via the

CES-D,whichwascompletedbymothersagainatthetimeoftheir

infant’sMRI session.

Infant 5-HT Transporter–Linked Polymorphic Region

Genotype

Todetermine infant 5-HT transporter–linkedpolymorphic re-

gion (5-HTTLPR) genotype, saliva sampleswere collected and

genotyped (eMethods in theSupplement).Genotypedatawere

missing for 9 infants, who were excluded from 5-HTTLPR

analyses.

MRI Acquisition and Analysis

Structural and diffusion MRI was acquired on a whole-body

scanner (MR 750 3T; GE Healthcare) with an 8-channel head

coil; eMethods in the Supplement provides details.

A T2-weighted structural MRI (single run) and diffusion-

weighted images (2 runs) were obtained from 98 infants; 80

infants had usable T2-weighted scans and 91had at least 1us-

able diffusion-weighted imaging run (eTable 2 in the Supple-

ment). TheT2-weighted imagesunderwent voxel-basedmor-

phometry. After preprocessing, diffusion-weighted imaging

underwent probabilistic tractography and a recently devel-

oped filtering algorithmto curtail false-positive streamline es-

timatesand improvethequantitative interpretabilityof stream-

line-based connectivity measures (eMethods in the

Supplement provide details).

Statistical Analysis

For both GM morphometry and WM connectivity, linear re-

gressionwithpermutation testing (nonparametric)wasused.

To examine the effects of SSRI exposure beyond the effects of

PMD exposure, primary contrast maps compared the SSRI

group vs both PMDandHC infants. Three follow-up contrasts

were then conducted, comparing (1) SSRI-exposed vs HC in-

fants, (2) SSRI- vs PMD-exposed infants, and (3) PMD-

exposed vs HC infants. The following covariates were in-

cluded in the initial regressionmodel: infant sex, age at scan,

birth weight, and mother's postnatal depression score, in-

dexed via the CES-D. Significance of effects was determined

using nonparametric permutation tests, which do not as-

sumeGaussiandistributions.Tocontrol for type Ierror invoxel-

based morphometry, we used conditional Monte Carlo per-

mutation testing (randomize program in Functional MRI of

Brain SoftwareLibrary [FSL] v5.0; 10000permutations)with

the cluster-extent thresholdoption (a cluster-forming thresh-

old of z = 3.1; whole-brain correction).

For WM connectivity data, we used both connection-

level andwhole-brainconnectome-level analysis.Connection-

level analysis used the same linear regression model as de-

scribed above with exhaustive permutation testing in the

ImPerm r package (https://cran.r-project.org/web/packages

/lmPerm/index.html).Whole-brainconnectome-level analysis

was done with the Network-Based Statistics Toolbox (NBS,

version 1.2).20 We used 2methods to control for type I error:

false discovery rate and network-based statistics. These

methodsare complementarybecause falsediscovery rate tests

thenullhypothesis at the individual connection level,whereas

network-basedstatistics testsat thenetwork levelusing family-

wiseerror.Falsediscovery rate ismoresensitive to focaleffects,

whilenetwork-based statistics ismore sensitive todistributed

networkeffects; 10000permutationswereused todetermine

significance.

Results

Demographics

Magnetic resonance imaging scans were collected from 103

term infants, 98 of whom had usable MRI data. Five infants

were excluded owing to apparent imaging artifacts resulting

from excessive head motion. Specific subsamples for each

imagingmodalitywere structuralMRI in 80 infants (SSRI, 14;

PMD, 19; andHC,47) anddiffusionMRI in92 infants (SSRI, 14;

PMD, 20; and HC, 58). Groups did not differ significantly on

infantgestational ageatbirth, sex, andbirthweight (allP > .05;

analysis of variance) (Table 1). No significant group differ-

ences were detected in the number of nondepressive psychi-

atricdisordersdocumentedwith theSADSmeasure.Groupdif-

ferences were detected for infant age at MRI scan, maternal

age,maternal race/ethnicity, and total family income (Table 1).

SSRI Exposure and GMVolume

Comparedwith infantsnot exposed toSSRIs (ie, PMDandHC),

SSRI-exposed infants showeda significantGMvolumeexpan-

sion in the right amygdala and insulawithmediumto large ef-

fect sizes (SSRIvsPMDandHC: rightamygdala,Cohend = 0.65;

95%CI,0.06-1.23; right insula, Cohend = 0.86;95%CI,0.26-

1.14) as well as in the right superior frontal gyrus and the left

occipital gyrus at a whole-brain corrected P value <.05 (ran-

domization permutation; adjusted for standard covariates)

(Figure 1 andTable2). Anunadjustedmodel also showeda sig-

nificant increase in volume in the right amygdala and right in-

sula at whole-brain corrected P < .05.

Comparedwith PMD infants alone, SSRI-exposed infants

showed a significant increase in volume in the right amyg-

dala, right insula, right superior frontal gyrus, and right pre-

cuneus atwhole-brain correctedP < .05 (Figure 1 andTable2).

Furthermore, compared with HC infants alone, SSRI-

exposed infants showeda significant increase involume in the

right amygdala, right insula, and right caudate. No regions

showedadecrease inGM intensity in the SSRI-exposed group

atwhole-brain correctedP < .05. Therewerenosignificantdif-

ferences in GM volumes between the PMD and HC groups.

SSRI Exposure andWMConnectivity

Linear regression of the structural connectome (connectivity

was defined as streamline counts) revealed a significant in-

crease in connectivity in the SSRI group relative to all infants

not exposed to SSRIs (SSRI vs PMD andHC) in the following 4

connections: right amygdala-right insula, left anterior cingu-

late cortex-left thalamus, right precentral gyrus-right cu-

neus, and left insula-right precuneus at P < .05 (permutation
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testing; null hypothesis testing at the individual connection

level using false discovery rate). An unadjusted model simi-

larly showedasignificant increase inconnectivitybetween the

right amygdalaandright insulaandbetween the left insulaand

right precuneus atP < .05.However, at thenetwork level (net-

work-based statistics), the structural connectome showedno

significant group differences, suggesting similar topology of

the structural connectomes across the 3 groups (Figure 2A).

Fractional anisotropy and mean diffusivity of the structural

connectomes showednosignificant effectsof groupatP < .05.

Given the significant increase in GM volumes in the

right amygdala and right insula in the SSRI group (Figure 2B

and C), we performed a separate analysis focusing on WM

connectivity between the 2 regions to better estimate the

effect size. With a large effect size, linear regression showed

an increase in structural connectivity in the SSRI-exposed

group relative to all non–SSRI-exposed infants (SSRI vs PMD

and HC: t = 4.82; P < .001; Cohen d = 0.99; 95% CI, 0.40-

1.57; adjusted for the aforementioned covariates). Also with

large effect sizes, the SSRI group showed an increase com-

pared separately with either HC (SSRI vs HC: t = 4.68;

P < .001; Cohen d = 0.97; 95% CI, 0.36-1.57) or PMD (SSRI vs

PMD: t = 3.82; P < .001; Cohen d = 1.16; 95% CI, 0.41-1.89).

We confirmed these results in an additional tractography

analysis with a larger total streamline count (ie, 100 million

for initial tractography and 5 million for the streamline fil-

tering analysis).

Potential Confounders

Effects of SSRIs on GM volume expansion and increased

WM connectivity remained significant after adjusting for

maternal age, maternal race/ethnicity, total household

income, maternal education, maternal comorbid psychiatric

disorders, and infant 5-HTTLPR genotype (eTable 3 and

eResults in the Supplement).

Prediction of Brain Changes AssociatedWith Prenatal SSRI

Exposure

We assessed the capability of the selected GM and WMmea-

sures (amygdala volume, insula volume, and amygdala-

insula tract estimate) to predict prenatal SSRI exposure

(Figure 3). A logistic regression model with both GM and

Table 1. Demographic Data

Characteristic
SSRIa

(n = 16)
PMD
(n = 21)

HC
(n = 61)

Test Statistic
(df) P Value

Age at scan,
mean (SD), wk

4.29 (1.81) 3.03 (1.65) 3.30 (1.27) F2,95 = 3.82 .02

Gestational age
at birth, mean (SD),
wk

38.71 (1.00) 39.32 (1.04) 39.43 (1.06) F2,95 = 3.08 .05

Sex χ
2

2 = 0.84

Male 8 8 30
.65

Female 8 13 31

Infant birth weight,
mean (SD), g

3754.19 (1320.23) 4000.57 (755.81) 3888.78 (746.28) F2,95 = 0.37 .69

Maternal age,
mean (SD), y

33.12 (4.20) 27.55 (6.57) 31.04 (5.75) F2,95 = 4.72 .01

Maternal
race/ethnicity

χ
2
6 = 20.91

Hispanic/Latina 0 7 19

.002
White 12 3 16

Black/African
American

1 8 17

Other 3 3 9

Total family income,
$

χ
2
6 = 37.98

0-25 000 1 13 13

<.001
26 000-50 000 1 4 16

51 000-100 000 2 2 20

>100 001 12 2 11

Infant SERT genotype χ
2
6 = 2.66

Long/long 4 8 21

.61Short/long 4 7 28

Short/short 4 2 9

Depressive disorder 7b 16c

Women with
nondepressive
disorder

4d 3e 5f
χ

2
2 = 2.91 .23

Maternal CES-D,
prenatal, mean (SD)

12.63 (12.12) 24.33 (7.22) 7.22 (3.99) F2,95 = 51.80 <.001

Maternal CES-D,
postnatal, mean (SD)

10.84 (11.44) 15.8 (9.39) 6.98 (4.86) F2,95 = 11.54 <.001

Abbreviations: CES-D, Center For

Epidemiologic Studies Depression

scale; HC, healthy control; MDD,

major depressive disorder; PMD,

prenatal maternal depression; SADS,

Schedule for Affective Disorders and

Schizophrenia; SERT, serotonin

transporter; SSRI, selective serotonin

reuptake inhibitor.

a Exposure to low-level (n = 4),

midlevel (n = 7), and high-level

(n = 5) SSRI dosage (eMethods in

the Supplement) in the first (n = 1),

second (n = 2), and third (n = 13)

trimesters.

bWith diagnosis based on SADS

score18: major depressive disorder

(n = 3) and depressive disorder not

otherwise specified (n = 3).

c With diagnosis based on SADS

score: major depressive disorder

(n = 4) and depressive disorder not

otherwise specified (n = 12).

dWith diagnosis based on SADS

score: bulimia (n = 1), panic disorder

(n = 2), generalized anxiety disorder

(n = 1), and obsessive-compulsive

disorder (n = 1).

eWith diagnosis based on SADS

score: posttraumatic stress disorder

(n = 1), panic disorder (n = 2),

agoraphobia (n = 1),

obsessive-compulsive disorder

(n = 1), and simple phobia (n = 1).

f With diagnosis based on SADS

score: posttraumatic stress disorder

(n = 1) and simple phobia (n = 4).
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WM (GM and WM model) showed the greatest area under

the curve (AUC) of 0.83 (95% CI, 0.63-0.93; leave-1-out

cross-validation), significantly greater than models with

either WM (P = .008, Wilcoxon rank sum test; AUC, 0.74;

95% CI, 0.51-0.87) or GM (P = .003; AUC, 0.67; 95% CI, 0.45-

0.84) alone. The GM and WM model with randomly per-

muted group labels showed an AUC of 0.41 (1000

iterations).

Discussion

Toourknowledge, this is the first study to report increasedvol-

umes of the amygdala and insular cortex, aswell as increased

WM connection strength between these 2 regions, in prena-

tally SSRI-exposed infants.Our findings suggest apotential as-

sociation between prenatal SSRI exposure, likely via aberrant

Figure 1. Brain Region Volumes in InfantsWith Prenatal Selective Serotonin Reuptake Inhibitor (SSRI) Exposure
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A, Significant group volume differences in infant brains (mean, 4 weeks).

Regression analyses were conducted on gray matter (GM) volumemaps,

estimated from T2-weightedmagnetic resonance imaging and through

voxel-basedmorphometry, using a whole-brain corrected P < .05

(randomization permutation; cluster-extent based correction). The colored

areas show an increase in volume in SSRI-exposed infants relative to prenatal

maternal depression (PMD) without SSRI exposure (green), healthy controls

(HC) (blue), and both groups combined (orange) (SSRI, n = 14; PMD, n = 19; HC,

n = 47). Compared with the PMD, HC, and both groups combined, the SSRI

group showed significant expansion in volume in the right amygdala and insula

compared with the PMD group and combined groups only in the superior

frontal gyrus, and compared with combined groups only, the occipital gyrus. B,

Distribution (colored area), quartiles (thick bar), 95% CIs (thin line), and

medians (white dots). Open triangles represent individual infant values. The

significance of group differences was based on voxelwise analysis (whole-brain

corrected using randomization permutation) from the 2 separate clusters in the

right amygdala and the anterior insula. au indicates arbitrary unit; c, cortex; g,

gyrus.

a P = .03 compared with both the PMD group, P = .02 compared with the HC

group, and P = .01 compared with the PMD and HC groups combined, all

significant results.

bP = .34 compared with the HC group.
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serotonin signaling, and the development of the amygdala-

insula circuit in the fetal brain.

Expression patterns of the 5-HT transporter in the devel-

oping brainmay underlie the association of prenatal SSRI ex-

posurewith alteredbrainmorphology. Exclusively during the

prenatal period, 5-HT transporter is expressed in serotoner-

gic neurons (eg, dorsal raphe) as well as nonserotonergic re-

gions across the brain, such as corticolimbic and sensorimo-

tor systems, as commonly seen in rodents,21 nonhuman

primates,22andhumans.5Expression innonserotoninergiccells

is then repressed after birth.23 It is thus possible that the tran-

sient prenatal expression of the 5-HT transporter in nonsero-

tonergic systems may render the fetal vs postnatal brain dif-

ferentially sensitive to SSRI exposure.

Our finding of increasedGMvolume in the amygdala, an-

terior insula, and superior frontal gyrus in prenatally SSRI-

exposed infants is in line with findings from animal studies.

In 5-HT transporter knockout mice, studies have shown

Figure 2.WhiteMatter (WM) Structural Connections in InfantsWith Prenatal Exposure to Selective Serotonin Reuptake Inhibitors (SSRIs)

Estimated WM connections
in each group
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A,White matter structural connectomes (90 regions) estimated using diffusion

tractography; across both hemispheres, similar connectome organization was

evident in each study group: healthy control (HC) infants, SSRI-exposed infants,

and prenatal maternal depression (PMD)-exposed infants without SSRI

exposure (permutation tests against 1000 randomized connections; P < .05;

SSRI, n = 14; PMD, n = 20; HC, n = 58). B, Upper row shows amap of significant

group differences inWM connectivity. Regression analyses were conducted on

the connectivity matrix using a whole-brain-corrected P < .05 (randomization

permutation; false discovery rate control). Lower row shows a representative

WM pathway connecting the right amygdala (red) and the right insula (yellow)

color-coded by direction. C, Distributions (colored area), quartiles (thick bar),

95% CIs (thin line), andmedians (white dots). Open triangles represent infants.

The significance of the group differences was based on a regressionmodel

performed on the right amygdala-right amygdala connectivity (exhaustive

permutations).

a P < .001 compared with the PMD group, P < .001 compared with the HC

group, and P = .001 compared with the PMD and HC groups combined.

bP = .80 compared with the HC group.

Table 2. Group Comparison of GrayMatter Volumes (Voxel-BasedMorphometry)

Brain Region
Coordinates
x, y, z, mm

Whole-Brain Corrected
P Valuea Cluster Size, mm3

Contrast: SSRI>PMD + HC

Right amygdala 17, −1,−11 = .01 397

Right insula/orbitofrontal cortex 28, 8, −5 .01 50

Right superior frontal gyrus 3, 7, 36 .03 129

Left occipital gyrus −20,−63, 9 .04 116

Contrast: SSRI>PMD

Right amygdala 16, −2,−12 .03 65

Right insula/orbitofrontal cortex 29, 9, −6 .03 70

Right superior frontal gyrus 3, 10, 35 .03 35

0, 14, 29 .03 19

Right precuneus 29, 9, −6 .03 70

Contrast: SSRI>HC

Right amygdala/insula 15, −2, 08 .02 211

Right caudate 7, 0, −2 .02 26

Contrast: SSRI>PMD + HC

Right amygdala 17, −1,−11 .01 397

Right insula/orbitofrontal cortex 28, 8, −5 .01 50

Right superior frontal gyrus 3, 7, 36 .03 129

Left occipital gyrus −20,−63, 9 .04 116

Abbreviations: HC, healthy control;

PMD, prenatal maternal depression;

SSRI, selective serotonin reuptake

inhibitor.

a Significance was determined using

randomization permutation.
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increaseddendritic spinedensity in the amygdala24,25 and in-

creased dendritic branching of pyramidal neurons of the in-

fralimbic cortex.25 Studies also point to effects of pharmaco-

logic blockade of the 5-HT transporter in rodents during the

immediate postnatal period (ie, comparable to third-

trimester gestation in humans) with subsequent increased

anxiety anddepression-likebehaviors.3,26However, thesebe-

havioral sequelae emerged only after the rodents entered

puberty,3much like what has been observed in a birth cohort

study of children with gestational SSRI exposure.14

Coordinationoftheamygdalaandinsuladuringthreataware-

ness isessential toadaptive fear regulation.27,28Ameta-analysis

of functionalbrain imagingstudies indicates that fearcondition-

ing is associatedwith task-relatedactivations inboth theamyg-

dalaand insula inhealthy individuals,29andanalogous findings

are reported in individuals with high trait anxiety.30 Similarly,

thecoordinationof theamygdalaandinsula isessentialnotonly

for fear conditioning, but also for anticipatoryanxiety, particu-

larly under conditions of uncertainty.31,32

Abnormalities in the amygdala-insula circuitrymay be as-

sociatedwithanxietyanddepression.33 Increasedamygdalavol-

umes are seen in both children and adults with anxiety

disorders,34-36heightenedamygdalaandinsulatask-relatedfunc-

tionalMRI activations are evident in adultswith anxietydisor-

dersduringthepresentationoffearfulstimuli,29andresting-state

functionalMRI studies showincreased functional connectivity

betweentheamygdalaandinsulaingeneralizedanxietyandpost-

traumatic stress disorder.37,38 Similar functional connectivity

findingsare reported inchildrenandadolescentsacrossa range

of anxiety disorders and symptoms.34,39,40 This abnormal

amygdala-insulacircuitrymaybeassociatedwith increasedvul-

nerability to anxiety and/or other mood disorders. Amygdala-

insula hyperactivity to threats is reported in peoplewho are at

risk but not yetmeeting criteria for anxiety disorders, suggest-

ingthathyperactivity inthiscircuitmayindexincreasedsuscep-

tibility to anxiety disorders.30 Taken together, the structurally

primedcircuit in the infantbrainscould leadtomaladaptive fear

processingintheir later life,suchasgeneralizationofconditioned

fear or negative attention bias.

Prior infant neuroimaging studies report seemingly

mixed findings: increased fractional anisotropy of the supe-

rior WM pathway16 and decreased fractional anisotropy and

increased mean diffusivity 17 of the WM pathways. How-

ever, the first study had no direct comparison of exposure to

both SSRI and PMD vs exposure with PMD alone and, in the

second study, the association between prematurity and

neurodevelopment might confound the results.

The effects of SSRIs were present only in the right hemi-

sphere. One study hints at asymmetric distributions of 5-HT

receptors. In healthy adults, 5-HT1A receptor binding esti-

mated by positron emission tomography is higher in the

right frontal gyri relative to their left hemispheric counter-

parts (and higher in the left auditory cortex).41 It remains to

be determined whether the asymmetric expression pattern

of 5-HT transporter in adults is also present during the fetal

period.

Limitations

Our findings should be interpreted in the context of a few

limitations. First, because participants were not randomly

assigned to the PMD or SSRI group, there could be unmea-

sured sample differences. It is possible that women who

received an SSRI during pregnancy were more severely

depressed than were those with PMD. Because our assess-

ments of depression occurred when women were already

receiving the SSRI, this hypothesis requires further investi-

gation. Future human studies could include randomization

and placebo control (eg, clinicaltrials.gov Identifier:

NCT02185547). Second, the groups in our study differed in

sociodemographics (maternal education, income, race/

ethnicity, and birth weight). Although we statistically

adjusted for these potential confounding variables, future

research will be needed to conclusively disentangle SSRI

and PMD exposure from these sociodemographic variables.

Third, the behavioral and psychological correlates of our

volumetric and connectivity findings need to be determined

and longitudinal studies will need to examine whether

developmental trajectories are affected. Last, the accuracy

(eg, sensitivity, but perhaps not reliability42) of the fiber ori-

entation estimates in diffusion probabilistic tractography

might be partially limited by a relatively small number of

gradient directions (n = 11). However, our selection of scan-

ning parameters was based on multiple factors, not solely

on the number of gradient directions, such as spatial resolu-

tion (submillimeter in-plane resolution for the small neona-

tal brains), scan duration, and signal-to-noise ratio that

decreases as the number of gradient directions increases.

Figure 3. Selected GrayMatter (GM) andWhiteMatter (WM)Measures

AssociatedWith Brain Changes After Prenatal Exposure to Selective

Serotonin Reuptake Inhibitors (SSRIs)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0 0.2 0.4 0.6 0.8 1.0

T
ru

e
-P

o
si

ti
v

e
 R

at
e

False-Positive Rate

GM + WM

WM

GM

Receiver operating characteristics analysis curve showing cross-validated

diagnostic accuracy of a linear regressionmodel predicting SSRI exposure

(leave-1-out cross validation). We tested 3 logistic regressionmodels with

different sets of the selected brain measures as predictors: GM+WM (orange),

WM (gray), and GM (blue) models (predictors: for GM, right amygdala volume

and right insula volume; for WM, amygdala-insula connectivity). Shaded areas

are confidence bounds (estimated in 5000 bootstrap samples).
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Conclusions

Use of SSRIs during pregnancy has increased in recent

decades,43 yet their association with fetal neurodevelop-

ment continues to be a topic of considerable debate. Because

untreatedPMDposes risks toboth the infantandmother,2,44-46

the decision to initiate, continue, or suspend SSRI treatment

remains a clinical dilemma. Preclinical studies of rodents in-

dicate that dose, timing, andmechanismof action (5-HT aug-

menting or not) all contribute to outcomes in later life.3,9,10,47

Further study is required tobetter elucidate the effects of ges-

tational SSRI exposure on fetal brain development and later

life susceptibility to depressive, cognitive, and motor abnor-

malities. Such information may eventually allow more in-

formed clinical decisions about how to best treat psychiatric

disordersduringpregnancy for thebenefit of bothmother and

fetus.
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