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Abstract

Currently available antidepressants have a substantial time lag to induce therapeutic response and a relatively low

efficacy. The development of drugs that addresses these limitations is critical to improving public health. Cannabidiol

(CBD), a non-psychotomimetic component of Cannabis sativa, is a promising compound since it shows large-

spectrum therapeutic potential in preclinical models and humans. However, its antidepressant properties have not

been completely investigated. Therefore, the aims of this study were to investigate in male rodents (i) whether CBD

could induce rapid and sustained antidepressant-like effects after a single administration and (ii) whether such effects

could be related to changes in synaptic proteins/function. Results showed that a single dose of CBD dose-

dependently induced antidepressant-like effect (7–30 mg/kg) in Swiss mice submitted to the forced swim test

(FST), 30 min (acute) or 7 days (sustained) following treatment. Similar effects were observed in the Flinders

Sensitive and Flinders Resistant Line (FSL/FRL) rats and the learned helplessness (LH) paradigm using Wistar rats.

The acute antidepressant effects (30 min) were associated with increased expression of synaptophysin and PSD95 in

the medial prefrontal cortex (mPFC) and elevated BDNF levels in both mPFC and hippocampus (HPC). CBD also

increased spine density in the mPFC after 30 min, but not 7 days later. Intracerebroventricular injection of the TrkB

antagonist, K252a (0.05 nmol/μL), or the mTOR inhibitor, rapamycin (1 nmol/μL), abolished the behavioral effects

of CBD. These results indicate that CBD induces fast and sustained antidepressant-like effect in distinct animal

models relevant for depression. These effects may be related to rapid changes in synaptic plasticity in the mPFC

through activation of the BDNF-TrkB signaling pathway. The data support a promising therapeutic profile for CBD

as a new fast-acting antidepressant drug.
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Introduction

Major depressive disorder (MDD) is a recurrent condition,

being among the leading contributors to social and economic

burden, affecting approximately 20% of the global population

[1]. According to the World Health Organization, MDD is a

leading cause of disability [2]. The current pharmacological

treatment approaches indicate the use of serotonin reuptake

inhibitors (SSRI) as first-line medications [3, 4]. However,

several weeks of treatment are needed to induce a therapeutic

response, and up to 33% of the patients are considered treat-

ment-resistant, failing to respond to two or more treatment

attempts [5]. Also, the adherence of patients to these medi-

cines is relatively low, as they cause several undesired side

effects [6, 7].

In recent years, new fast-acting effective antidepressants

have been proposed based on promising data from clinical

and preclinical studies [8, 9]. Among them, ketamine, a mixed

profile drug with high affinity for the NMDA-receptor, is the

most studied [10]. Ketamine seems to disinhibit glutamate re-

lease, facilitating neuroplastic changes in several brain areas,

including the prefrontal cortex (PFC), which in turn contributes

to the restoration of the neuronal circuities altered in stress and

depression [11]. Importantly, a single dose of ketamine rapidly

increases both intra- and extracellular brain-derived neuro-

trophic factor (BDNF), which could constitute part of its fast-

acting antidepressant mechanism [12]. Stress and depression

are associated to decreased BDNF levels and expression of its

receptor tropomyosin-related kinase B (TrkB) in the hippo-

campus (HPC) [13, 14] and PFC [15, 16].

BDNFbinds and activates TrkB receptors, triggeringmultiple

intracellular signaling cascades (reviewed in [17, 18]), such as

those regulated by the mammalian target of rapamycin complex

1 (mTORC1), resulting in fast protein synthesis and synaptogen-

esis [19–21]. Therefore, the increase in BDNF levels induced by

ketamine may activate TrkB-mTOR signaling, thereby contrib-

uting to its sustained antidepressant effects [17, 22].

Although ketamine is effective in reducing depressive symp-

toms, it produces psychotomimetic undesired effects, even in low

doses [23]. In this sense, the discovery of new drugs that could

act as rapid antidepressants without inducing significant side

effects is of great importance. In this scenario, cannabidiol

(CBD), a non-psychotomimetic cannabinoid present in the

Cannabis sativa plant, seems to be a promising compound. It

has shown therapeutic potential in different psychiatric disorders,

including anxiety, schizophrenia, and epilepsy, with significant

effects in humans and rodent models [24]. Importantly,

antidepressant-like effects have been described for CBD in the

forced swimming test, in the tail suspension test, and in the

olfactory bulbectomy model [25–30]. However, CBD antide-

pressant effects have not been tested in animal models with more

appropriate face and construct validity. It also remains to be

investigated if CBD can induce acute and sustained effects.

The mechanisms involved in CBD-induced psychotropic

effects are not entirely understood. CBD activates 5-HT1A and

peroxisome proliferator-activated (PPARγ) receptors [31, 32].

It can also facilitate endocannabinoid signaling through inhi-

bition of the fatty acid amide hydrolase enzyme (FAAH) [33,

34]. Additionally, CBD increases BDNF and mTOR signaling

in models of neurodegeneration [35, 36]. It is not known,

however, if these mechanisms participate in CBD-induced

antidepressant effects.

Therefore, the aim of the present study was, for the first

time, to investigate whether (i) CBD could produce acute and

sustained antidepressant-like effects in distinct animal models,

and (ii) to assess whether such effects would involve facilita-

tion of BDNF signaling and neuroplastic mechanisms.

Materials and Methods

Animals

Male Swiss mice (25–30 g, 8 weeks) and maleWistar from the

FMRP-USP Facility, Sprague-Dawley (SD) from Taconic

(Copenhagen—Denmark), and Flinders Resistant (FRL) or

Flinders Sensitive (FSL, 280–350 g) line rats from

Translational Neuropsychiatry Unit—Aarhus University breed-

ing colonies—were used to conduct the experiments. Mice were

housed in groups of 10 animals per cage (1147 cm2).Wistar rats

were housed individually (570 cm2), and SD, FRL, and FSL rats

were housed in pairs. All animals were housed in temperature-

controlled room (23 ± 2 °C) with a 12/12-h light-dark cycle

(lights on 6:30 a.m./ lights off 6:30 p.m.). Food and water were

available ad libitum throughout the study period. The total num-

ber of animals used in the present study was 367.

The protocols described in the present study were approved

by the respective ethical committees (Danish National

Committee for Ethics in Animal Experimentation (2012-15-

3934-00254) and CETEA (no. 072/2014), and all efforts were

made to minimize animal suffering and to reduce the number

of animals used.

Drugs and Reagents

Cannabidiol (CBD, THC Pharma, Germany, 7, 10, and

30 mg kg−1) was dissolved in Tween 80 (Synth, Brazil) 2% in

sterile isotonic saline for systemic administration in mice and

Wistar rats [25], or in an aqueous solution containing 30% of

1,2-Propyleneglycol (Riedel-de Haen, Germany) and 2.5% of

ethanol (CCS Healthcare AB, Sweden) for systemic administra-

tion in SD, FRL, and FSL rats (according to pilot experiments).

For intracerebral administration, CBD (50, 150, and 300 nmol/

μL) was dissolved in grape fruit oil, as described in [29]. K252a

(Sigma-Aldrich, St. Louis,MO, USA, 0.05 nmol uL−1; [37]) and

S-Ketamine (Pfizer, IL, USA, 15 mg kg−1; [38]) were dissolved
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in sterile isotonic saline, and rapamycin (LC laboratories, MA,

USA, 1 nmol μl−1) in DMSO [39]. When two drugs used in the

same experiment had different vehicles, half of the animals in the

final control group received administration of each vehicle group.

Experimental Design

Experiment 1—Evaluation of Acute and Sustained Effects

Induced by CBD in Mice Submitted to the FST

After 2 h habituation in the experimental room, mice received

intraperitoneal (ip) injections of CBD (7, 10, and 30 mg kg−1)

or vehicle (10mL kg−1) and were submitted to the FST 30min

later (acute effect). Independent groups of mice received ip

injections of CBD (10 and 30 mg kg−1) or vehicle

(10 mL kg−1) and were submitted to the FST 7 days later

(sustained effect). Mice FST consisted of 6 min swimming

session when animals were individually placed in glass cylin-

ders (25 cm height, 17 cm diameter) containing 10 cm of

water (25 °C), as described in [25, 40].

To investigate possible unspecific locomotor effects in-

duced by CBD, the drug (10 mg kg−1) or its vehicle

(10 mL kg−01) was administered intraperitoneally to indepen-

dent groups of mice, which were submitted to the open field

test, OFT, 30 min (acute effect) or 7 days later (sustained

effect), as described in [25].

Experiment 2—Participation of Trk and mTOR Signaling

Mechanisms in CBD Effects

Since TrkB and mTOR signaling have been implicated in me-

diating rapid and sustained antidepressant effect [17, 22], we

investigated if CBD effects in the FST could involve the same

signaling pathway. To do that, intracerebroventricular (icv) drug

injections were performed with the aim to address: (1) the ef-

fects of direct injection of CBD into the CNS; (2) the effects

induced by blockade of TrkB or mTOR upon CBD effects.

Therefore, mice underwent stereotaxic surgery to have

guide-cannulas implanted into the lateral ventricle, as described

in the supplementary material. The first experiment consisted of

an icv injection of vehicle (1 μL) or CBD (50, 150, and

300 nmol μL−1). Thirty minutes later, mice were submitted to

the OFT and, immediately after, to the FST, as previously de-

scribed. In the second experiment, mice received a first icv

injection of vehicle, K252a (0.05 nmol μL−1) or rapamycin

(1 nmol μL−1) followed by a second injection (ip), 5 min later,

of vehicle or CBD (10 mg kg−1). Thirty minutes after the sys-

temic injection, the animals were individually submitted to the

OFT (6 min) and then to the FST (6 min).

After the behavioral tests, animals were euthanized by de-

capitation preceded by ip administration of an anesthetic

(chloral hydrate solution 5%, 0.1 mL/10 g, C2H3Cl3O2,

VETEC, Brazil). Soon after, Evan’s blue dye (1 μL) was

injected into the lateral ventricle as a marker. The injection

sites were visually identified by dye spread over the ventricles.

Animals that received injections outside the ventricle were

excluded from statistical analysis.

Experiment 3—CBD Effects on BDNF and Synaptic Protein

Levels

To investigate if CBD effects could be associated to rapid and/

or sustained changes in BDNF and synaptic protein levels in

the HPC and PFC, independent groups of animals received ip

injections of CBD (10 mg kg−1) or vehicle (10 mL kg−1) and

were submitted to the FST, 30 min or 7 days later.

Immediately after the FST, the animals were deeply anesthe-

tized with 5% chloral hydrate (1mL kg−1, Sigma-Aldrich) and

decapitated. The HPC and PFC were dissected for further

analysis of BDNF levels by ELISA or PSD95 and SYP by

WB, as detailed in the supplementary material.

Experiment 4—CBD Effects on the Number of Dendritic

Spines in Mice

To investigate if CBD effects could be associated with rapid and/

or sustained changes in the number of dendritic spines in the

PFC and HPC, independent groups of animals received ip injec-

tions of CBD (10 mg kg−1) or vehicle (10 mL kg−1), and 30 min

or 7 days later, were submitted to the FST. Immediately after or

7 days later, the animals were sacrificed, and their brain removed

for further processing with the Golgi-Cox method. The proce-

dure was performed using the FD Rapid Golgi Stain Kit (FD

Neurotechnologies, USA) according to fabricant’s recommenda-

tions, with detailed protocol in supplementary material. The

number of spines in 10 μm of secondary and tertiary apical

dendrites located into the dentate gyrus of the HPC and in the

PFC (layer II/III) was analyzed using a light microscope (Zeiss,

Germany). An analyzer blind to the experimental conditions

measured six to eight neurons per animal distributed over de-

fined plans according to Paxinos and Franklin Atlas [41], com-

plying with the following criteria: the neurons were relatively

isolated, displayed a defined cell body and a complete dendritic

tree evidenced by well-defined endings, and presented intact

primary, secondary, and tertiary branches.

Experiment 5—Acute and Sustained Effect of CBD in Rats

Submitted to Different Preclinical Models

To further substantiate the acute and sustained behavioral ef-

fects induced by CBD, we used two different animal models: a

stress-based animal model (learned helplessness, LH) and an

animal model based on selective breeding (FRL/FRL

combined with FST).

The learned helplessness paradigm was performed as previ-

ously described [42], with further details in the supplementary
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material. On day 1, rats were submitted to a pretest session (PT)

with 40 inescapable electric foot shocks (0.4 mA, 10 s duration;

PT: stressed group) and, on the 7th day, they were submitted to

the test (T, 30 escapable foot shocks, 0.4 mA, 10 s duration, 30–

90 s interval) preceded by a tone (60 dB, 670Hz) that started 5 s

before each shock and lasted until its end. Animals could avoid

the shock during the sound presentation or interrupt its presen-

tation (escape) by crossing to opposite side of the chamber. The

absence of this behavior was considered an escape failure. It is

well-documented that PT exposure increases, whereas antide-

pressants decrease, the number of escape failures in this para-

digm [43]. To investigate CBD effects, rats received a single

injection of CBD (10 and 30 mg kg−1) or vehicle (10 mL kg−1)

in one of the following periods: immediately after or 24 h after

PT, or on day 7 (1 h before the test).

To evaluate CBD effects in FRL/FSL, we first tested CBD in

Sprague-Dawley rats, the strain background from which FRL

and FSL animals were developed [44]. We also included keta-

mine as a positive control for the acute and sustained effects

[38]. The animals were exposed to the PT and T sessions of the

forced swim as described earlier [38, 45]. One hour before the

T, they received an ip injection of ketamine (15 mg kg−1), CBD

(10 and 30 mg kg−1) or vehicle. Locomotor activity was

assessed in the OFT immediately before the FST. After 7 days,

rats were re-exposed to the test session of FST. FRL and FSL

animals were exposed only to the test session of forced swim,

as previously described [44]. One hour after the administration

of ketamine (15 mg kg−1), CBD (10 and 30 mg kg−1) or

vehicle, the animals were exposed to the OFT. Immediately

after the OFT, the animals were submitted to the FST (acute

effect). After 7 days, the rats were re-exposed to the test session

of the FST (sustained effect).

In rats, OFT was carried out in a squared arena (100 cm ×

100 cm × 40 cm high), in a dimly lit (10 lx), temperature-

controlled room (24 ± 1 °C). The experiment was videotaped,

and the total distance traveled was analyzed using Ethovision

XT 11 software (Noldus Information Technology).

Statistical Analysis

Analyses of the FST and LH data were performed using one-

way ANOVA (post-test: Dunnett). Repeated measures (RM)-

ANOVA was used to compare the number of crossings in

OFT, and unpaired t test was used for the molecular data.

The GraphPad Prism 5.0 software was used for statistical

analyses. A 95% confidence interval and a significance level

of 5% (p < 0.05) were considered for all analyses.

Results

CBD Induces Acute and Sustained
Antidepressant-Like Effects in the Mice FST

CBD treatments significantly reduced the immobility time,

30 min (F3,23 = 3.871, p < 0.05, Fig. 1a) and 7 days (F2,18 =

Fig. 1 Acute and sustained

effects of cannabidiol (CBD) in

the mice forced swimming test

(FST) and open field test (OFT). a

Acutely, CBD treatment reduced

immobility time (IT) in FST (n =

6–7 mice per group). b The IT

was reduced in FST 7 days after

CBD treatment (n = 7 mice per

group). cThe number of crossings

did not differ between treatment

groups (n = 6 mice per group).

The data are presented as mean ±

SEM. *p < 0.05 compared to ve-

hicle (VEH) mice
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5.910, p < 0.05; Fig. 1b) after its single administration

(10 mg kg−1), thus revealing acute and sustained

antidepressant-like effect, respectively. As shown in Fig. 1c,

CBD (10 mg kg−1) did not induce any significant difference in

the number of crossings in the OFTwhen compared to vehicle

(RM-ANOVA; interaction, F10,75 = 5.15, p > 0.05; treatment,

F2,75 = 0.2862, p > 0.05; time, F5,75 = 0.8006, p < 0.05), which

excluded possible unspecific effects of CBD on locomotor

activity.

Participation of TrkB Receptors and mTOR Signaling
in CBD-Induced Effects

CBD significantly decreased the immobility time in the FST

after icv administration (Fig. 2a; 300 nmol/μL; one-way

ANOVA, F3,24 = 7.219, p < 0.05), without changing the num-

ber of crossings in the OFT (Fig. 2b; RM-ANOVA; interac-

tion, F9,66 = 1.49, p > 0.05; treatment, F3,66 = 1.605, p > 0.05;

time, F3,66 = 4.813, p < 0.05). Next, we analyzed if CBD ef-

fects could be blocked by a TrKB receptor antagonist (K252a)

or by an mTOR signaling inhibitor (rapamycin). As shown in

Fig. 2c, d, systemic CBD administration reduced the im-

mobility time in the FST (one-way ANOVA, F5,29 =

8.699, p < 0.05), which was blocked by icv K252a or

rapamycin administration (Fig. 2c; p > 0.05 compared to the

vehicle group). In the OFT, CBD did not change the number

of crossings (Fig. 2d; treatment, F5,84 = 0.5770, p > 0.05; in-

teraction, F15,84 = 0.3906, p > 0.05). Therefore, systemic ef-

fects of CBD are dependent on intact TrkB and mTOR

signaling in the CNS.

CBD Effects on BDNF and Synaptic Protein Levels

CBD administration (10 mg kg−1) acutely increased BDNF

levels in both the HPC and PFC (Fig. 3a; p < 0.05; t16 =

3.535; and t17 = 2.277, respectively), but this effect was not

Fig. 2 Trk and mTOR blockade impair cannabidiol (CBD) effects in the

forced swimming test (FST). a CBD treatment (icv) reduced immobility

time (IT) in FST, when compared to vehicle (VEH) (n = 6–8 mice per

group). b The number of crossings did not differ between treatment

groups (n = 6–8 mice per group). c The inhibition of mTOR

(Rapamycin, Rapam) and blockade of TrK (K252) prevented the reduc-

tion in IT in FST induced by CBD administration (n = 5–7 mice per

group). d The number of crossings did not differ between treatment

groups (n = 5–6 mice per group). Data are presented as mean ±

SEM. *p < 0.05 compared to VEH mice
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detected 7 days later (Fig. 3b; p > 0.05, HPC, t16 = 1.874 and

PFC, t18 = 0.799). On the other hand, 7 days after the CBD

administration, the synaptic protein (PSD95 and SYP) expres-

sion was increased only in the PFC (Fig. 3d; p < 0.05; t14 =

3.915; and t14 = 2.761, respectively). No change was found in

the HPC (Fig. 3e; p > 0.05; PSD95, t12 = 1.876 and SYP, t11 =

1.767). These results are consistent with a rapid increase in

BDNF levels in the HPC and PFC, associated with a delayed

increase in synaptic proteins in the PFC, in response to a single

CBD injection.

CBD Rapidly Increases the Number of Dendritic Spines

To investigate if dendritic remodeling would be associated

with the behavioral and molecular effects induced by CBD,

we analyzed the number of dendritic spines in the PFC and

HPC, 30 min and 7 days after drug injection. Acute adminis-

tration of CBD increased the number of dendritic spines in

both prelimbic and infralimbic areas of the medial PFC

(Fig. 4a, b; prelimbic PFC: secondary branch, t8 = 2.688; ter-

tiary branch, t8 = 2.636; infralimbic PFC: secondary branch,

t8 = 2.322; tertiary branch, t8 = 2.814; p < 0.05 for all).

However, no difference was found 7 days later (Fig. 4c, d;

prelimbic PFC: secondary branch, t6 = 0.7769; tertiary branch,

t6 = 0.9873; infralimbic PFC: secondary branch, t6 = 1.666;

tertiary branch, t6 = 0.2708; p > 0.05 for all). Also, CBD did

not change the number of dendritic spines in the dorsal HPC

(dentate gyrus) when compared to the vehicle group at any

time of analysis (p > 0.05; Fig. 4e, 30 min after the injection:

secondary branch, t8 = 0.1136; tertiary branch, t8 = 0.4951;

Fig. 4f, 7 days after the injection: secondary branch, t8 =

1.668; tertiary branch, t8 = 0.01073).

Acute and Sustained Effects of CBD in Rats Submitted
to Different Preclinical Models

To better support our findings regarding the rapid and

sustained effects induced by CBD in the FST, we analyzed

Fig. 3 Levels of BDNF, mTOR, and synaptic proteins in CBD-treated

mice submitted to forced swimming test (FST). a Acutely, BDNF levels

are increased in hippocampus (HPC) and prefrontal cortex (PFC) of mice

treated with CBD (n = 9–10 animals per group). b Seven days after CBD

administration, BDNF levels are not changed (n = 9–10 mice per group).

c Experimental scheme for WB of synaptic proteins. d CBD treatment

increased synaptic proteins levels in PFC (n = 8 mice per group). e CBD

treatment did not change synaptic proteins levels in HPC (n = 6–8 mice

per group). The data are presented as mean ± SEM. *p < 0.05 compared

to VEH mice
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its effects in two different animal models sensitive to antide-

pressant drugs, the learned helplessness and the FSL animals.

One-way ANOVA showed that administration of CBD imme-

diately after PT, but not 1 h before T, reduced the number of

escape failures (Fig.5a; one-way ANOVA, F4,47 = 2.818,

p < 0.05) and increased the number of escapes (Fig. 5b;

F4,47 = 2.134), without changing the number of crossings

(Fig. 5c; F4,47 = 1.681, p > 0.05). These data are indicative

of a rapid antidepressant-like effect of CBD since the LH is

irresponsible to acute (single) treatment with conventional

antidepressants.

In Sprague-Dawley rats, the control animals of FRL and

FSL rats, the injection of CBD at the dose of 30 mg kg−1

significantly reduced the immobility time in FST (Fig. 5d;

F3,23 = 3.348, p < 0.05). The same effect was found to the

positive-control ketamine (Fig. 5d; t11 = 2.732, p < 0.05).

Neither ketamine nor CBD modified the exploratory activity

of the animals in the OFT (Fig. 5e; F2,23 = 1178, p > 0.05).

Similarly, as shown in fig. 5f, g, CBD (10 and 30 mg kg−1)

and ketamine (15 mg kg−1) significantly reduced the immo-

bility time in FSL rats (Fig. 5f; F3,25 = 8.441, p < 0.05). When

the animals were re-exposed to FST, the groups treated with

CBD did not show any change in the immobility time (Fig. 5g;

F3,24 = 3873, p > 0.05) whereas this effect was still significant

to the positive-control ketamine (Fig. 5g; t12 = 2.941, p <

0.05). In FRL rats, injection of CBD and ketamine did not

reduce the immobility time in FST (Fig. 5g; F3,22 = 1.085,

p > 0.05). Seven days after, the animals were re-exposed to

the FST and CBD reduced the immobility significantly.

(Figure 5h; t13 = 2.689, p < 0.05). Neither ketamine or CBD

modified the exploratory activity of the animals in the OFT

(Fig. 5;h FSL, F3,28 = 0.0965; FRL; F3,22 = 0.3544, p > 0.05

for both).

Discussion

The main finding of the present study is that CBD induces not

only a robust acute, but also sustained, antidepressant-like ef-

fect in different species and distinct animal models involving

stress exposure (FST, LH) and selective breeding (FSL/FRL).

The rapid effect was accompanied by increased BDNF levels

in theHPC andmPFC, andmarkers of synaptic plasticity in the

mPFC. Moreover, CBD effect was blocked by icv injection of

TrkB receptor antagonist or mTOR inhibitor. Additionally, the

sustained effects of CBD were accompanied by increases in

PSD95 and SYP expression in the PFC, without any change in

the number of dendritic spines. Altogether, our results suggest

that the rapid antidepressant-like effect induced by acute CBD

injection involves BDNF/TrkB/mTOR signaling and increased

Fig. 4 Effect of cannabidiol (CBD) or vehicle (VEH) administration

in dendritic spines number. a Experimental scheme for acute treat-

ment. In prefrontal cortex (PFC), acute CBD treatment (ip) increased

dendritic spine number in prelimbic (PL; b) and infralimbic (IL; c)

regions (n = 5 mice per group). e Experimental scheme for sustained

treatment. Seven days after CBD injection (ip), the number of

dendritic spines did not change in PFC (PL and IL, f, g, respectively;

n = 4 mice per group). In hippocampus (dentate gyrus (DG)), system-

ic CBD administration did not change the dendritic spines number

(acute, d; 7 days, h; n = 5 mice per group). The data are presented as

mean ± SEM. *p < 0.05 compared to VEH mice
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dendritic spine density in the medial PFC, whereas the long-

lasting effect may be associated with an enhancement of syn-

aptic function in this same brain area.

The behavioral effects of CBD observed herein agree with

previous reports describing its antidepressant-like effects

[25–30]. For instance, systemic CBD treatment reduced the

immobility time in mice submitted to the FST [25–27] and the

tail suspension test (TST; [30]). In another study, CBD atten-

uated the behavioral deficits induced by olfactory bulbectomy

within 24 h, indicating a similar fast-acting antidepressant

profile [28]. Chronic treatment with CBD was also effective

in animals subjected to chronic unpredictable stress [46].

Interestingly, a recent study showed that CBD induces a pro-

hedonic effect in the saccharin preference test in the Wistar-

Kyoto, a genetic rat model of depression [47]. This finding is

in full accordance with our observation that CBD produced an

antidepressant-like effect in the FSL/FRL rats, another genetic

rat model of depression based on selective breeding [44].

Since fast-acting antidepressants, such as ketamine, Glyx-

13 (NMDA receptor partial agonist), and scopolamine (mus-

carinic receptor antagonist), induce behavioral effects through

rapid BDNF-mediated signaling and increased synaptogene-

sis in the PFC [11, 48, 49], we hypothesized that this mecha-

nism is essential for the behavioral effects induced by CBD.

BDNF is recognized as playing important roles in neuronal

survival, differentiation, outgrowth, and synaptogenesis, dur-

ing development and in the adult brain (for review see [55]).

Stress exposure is able to negatively change BDNF levels

whereas the behavioral effect of fast-acting antidepressants

has been related to the rapid and long-lasting increases in

synaptogenesis in response to increased BDNF levels in

PFC [56, 57]. In the hippocampus, Garcia and coworkers

demonstrated that 1 h after one single injection of ketamine

also increases BDNF levels [58]. Moreover, the fast-acting

behavioral antidepressant-like effects induced by ketamine

and other NMDA antagonist in mouse models was shown to

Fig. 5 Effect of cannabidiol (CBD) or vehicle (VEH) administration in

different animal models. In learned helplessness (LH), acute CBD treat-

ment (ip) induced sustained reduction in number of failures (a), increase

in the number of escape (b), and did not change the number of crossings

(c; n = 10–13 rats per group). In Sprague-Dawley rats, CBD and

ketamine (ket) treatment reduced the immobility time in forced

swimming test (FST; d; n = 6–7 rats per group) and did not

change the number of crossing in open field test (OFT; e; n =

6–7 rats per group). f Injection of CBD and ket in FSL rats

reduced the immobility time in FST (n = 4–8 per group). g The

re-exposition of FSL rats treated with CBD to the FST did not

change immobility time (n = 4–8 per group). h The traveled dis-

tance did not differ between treatment groups (n = 4–8 rats per

group). The data are presented as mean ± SEM. *p < 0.05 com-

pared to VEH mice; #p < 0.05 compared to the VEH mice; @p <

0.05 compared VEH FRL X VEH FSL
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be dependent on the rapid synthesis of BDNF due to de-

repression of its translation in the hippocampus [59].

Therefore, BDNF signaling in both PFC and hippocampus

seems to play an important role the behavioral effect induced

by fast-acting antidepressants.

Supporting our initial hypothesis, acute administration of

CBD (10 mg kg−1) rapidly increased BDNF levels in both

mPFC and HPC, an effect not observed 7 days later. Since

icv administration of k252a (Trk antagonist) or rapamycin

(mTOR inhibitor) blocked the behavioral effect induced by

systemic CBD administration, it is probable that the fast

antidepressant-like effect of CBD depends on intact BDNF-

TrkB-mTOR signaling in the brain. In support of our data,

repeated CBD treatment increased BNDF and mTOR levels

in the spinal cord [35] and brain of rodents exposed to models

of neurodegeneration [36]. In contrast, unaltered BDNF levels

in the PFC and HPC after acute CBD administration have also

been reported [25, 27]. However, differences in the age and

species used or CBD dose (30 vs. 10 mg kg−1; [25]) might

have contributed to the contradictory findings. Based on the

present study, we suggest that CBD can rapidly increase

BDNF levels in the PFC and HPC, an effect associated with

its behavioral effects in the FST. The rapid upregulation of

BDNF protein and subsequent activation of its receptor,

TrkB, could trigger several intracellular signaling pathways

that ultimately lead to mTOR activation (see [22]), which

mediates protein synthesis and synaptogenesis.

The mechanism responsible for CBD effects resulting in

increased BDNF and mTOR signaling are not yet clear. It is

known, however, that CBD increases serotonin levels in the

PFC [28] and that administration of CBD into the same brain

region induces antidepressant-like effects that are dependent

on local 5-HT1A activation [29]. Evidence indicates that treat-

ment with 5-HT1A agonists rapidly increases BDNF mRNA

and protein levels in PFC and hippocampus [60] and in cul-

tured neurons [61]. Moreover, decreased BDNF levels and

TrkB activation are described in the brain of 5-HT1A knockout

mice [62], thus suggesting that proper 5-HT1A activation

positively regulates BDNF levels in the brain. This

mechanism seems to participate in the behavioral effect

of fast-acting antidepressants, since activation of 5-HT1A

receptors in the medial PFC was shown to induce acute and

sustained antidepressant-like and the sustained effect induced

by systemic injection of ketamine was attenuated by intra-

medial PFC injection of a 5-HT1A receptor antagonist,

WAY100635. Altogether, it is possible to suggest that 5-

HT1A activation by CBD, either by direct binding or by indi-

rect increase in serotonin levels, can lead to increased BDNF

levels and TrkB activation, which would ultimately lead

mTOR activation and synaptogenesis, as we observed herein.

This hypothesis, however, warrants further investigation.

Alternatively, recent evidence indicates that chronic CBD

treatment induces behavioral and neuroplastic effects in

stressed animals due to a facilitation of endocannabinoid neu-

rotransmission and consequent CB1/CB2 receptor activation,

which could recruit intracellular/synaptic proteins involved in

neurogenesis and dendritic remodeling [63]. It remains to be

investigated if this could participate in acute and sustained

effects induced by the drug.

Based on the findings about BDNF and mTOR involve-

ment in CBD effects, we further investigated if CBD effects

would also be associated with increased levels of synaptic

proteins and dendritic spines, since chronic antidepressant

treatment prevents or reverses dendritic spine alterations

caused by stress [50, 51]. In addition, drugs with a fast-

acting antidepressant effect, such as ketamine, rapidly increase

the number of dendritic spines in the PFC and reverse the

effects of chronic stress via increased BDNF regulation of

synaptic protein synthesis [39, 52]. Our data indicate that

CBD increases the number of dendritic spines in the medial

PFC (PL and IL) 30min after the administration. Althoughwe

did not observe this effect 7 days later, there was an increase of

PSD95 and SYP in the PFC, suggesting an enhancement of

dendritic function. One possible explanation for the discrepant

results in the number of dendritic pines and synaptic proteins

at 30 min and 7 days after CBD administration could rely on

the fact that CBDwould actually rapidly favor synaptogenesis

to substantiate an activity-driven selection of the appropriate

synaptic contacts, thus allowing dendrite turnover to take

place [64]. Therefore, the number of dendrites would not be

increased after 7 days, only increased synaptic function as

revealed by increased SYP and PSD95.

Supporting our data, depressed subjects present reduced

PSD95 levels in the PFC, which is reversed by ketamine

[53]. Additionally, administration of rapamycin (icv and

intra-mPFC) blocks the antidepressant behavioral effects and

the increase in dendritic spines induced by ketamine [39].

Similarly, icv rapamycin administration blocked CBD-

induced behavioral effects in the present study. Altogether,

these results suggest that CBD induces fast effects on dendritic

remodeling in the mPFC, possibly involving BDNF-mediated

signaling. On the other hand, its sustained effect could rely on

increased synaptogenesis in the same brain region.

Experiments specifically targeting the mPFC or the HPC

could help clarifying the differential involvement of these

two brain regions in CBD-induced effects.

Finally, to further substantiate our behavioral findings in

the FST, we investigated CBD effects in two different animal

models with higher face, construct, and predictive validity, the

learned helplessness and FRL/FSL animals. Both models fail

to respond to the acute effects of conventional antidepressants,

but they positively identify the acute antidepressant effect of

ketamine [20, 44]. In our study, a single injection of CBD

reduced the number of escape failures in the LH and the im-

mobility time in the FSL animals. Additionally, the effects in

the LH and FRL animals were present 7 days after the first

Mol Neurobiol



injection. These results further support the proposal that CBD

possesses fast-acting antidepressant properties. The use of

more than one behavioral test can provide convergent validity

and increase confidence in studies aimed at identifying new

fast-acting antidepressant drugs [54]. Nevertheless, the fact

that all molecular analysis was performed with brain tissue

from only one species (mice) submitted to the forced swim-

ming test remains a limitation of the present study. Further

analysis using different animal models and treatment intervals

could reveal new important information about CBD effects.

In conclusion, this study demonstrates that CBD induces a

rapid antidepressant effect, probably by increasing BDNF sig-

naling in the PFC and synaptic dendritic spine density.

Moreover, a long-lasting enhancement of synaptic efficacy

could mediate CBD-sustained antidepressant effects.
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