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Extensive impact of non-antibiotic drugs
on human gut bacteria
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A few commonly used non-antibiotic drugs have recently been associated with changes in gut microbiome composition,
but the extent of this phenomenon is unknown. Here, we screened more than 1,000 marketed drugs against 40
representative gut bacterial strains, and found that 24% of the drugs with human targets, including members of all
therapeutic classes, inhibited the growth of at least one strain in vitro. Particular classes, such as the chemically diverse
antipsychotics, were overrepresented in this group. The effects of human-targeted drugs on gut bacteria are reflected
on their antibiotic-like side effects in humans and are concordant with existing human cohort studies. Susceptibility to
antibiotics and human-targeted drugs correlates across bacterial species, suggesting common resistance mechanisms,
which we verified for some drugs. The potential risk of non-antibiotics promoting antibiotic resistance warrants further
exploration. Our results provide a resource for future research on drug-microbiome interactions, opening new paths for
side effect control and drug repurposing, and broadening our view of antibiotic resistance.

Pharmaceutical agents have both beneficial and undesirable effects.
Studies on the mechanisms of action and off-target spectra of vari-
ous drugs aim to improve their efficacy and reduce their side effects.
Although many drugs have gastrointestinal side effects and the gut
microbiome itself is pivotal for human health', the role of the gut micro-
biota in these processes is rarely considered. Recently, consumption of
drugs designed to target human cells and not microbes, such as anti-
diabetics (metformin?), proton pump inhibitors (PPIs)**, nonsteroi-
dal anti-inflammatory drugs® and atypical antipsychotics (AAPs)®, has
been associated with changes in microbiome composition. A larger
cohort study suggested that medication can alter gut microbiome com-
position more generally”. As it is unclear whether such effects are direct
and go beyond the few drug classes studied, we systematically profiled
interactions between drugs and individual gut bacteria. We aimed to
generate a comprehensive resource of drug actions on the microbiome,
which could facilitate more in-depth clinical and mechanistic studies,
ultimately improving therapy and drug design.

A high-throughput drug screen on gut bacteria

To systematically map interactions between drugs and human gut
bacteria, we monitored the growth of 40 representative isolates upon
treatment with 1,197 compounds in modified Gifu anaerobic medium
(mGAM) broth, which partially recapitulates the species relative abun-
dances in human gut microbiomes®, under anaerobic conditions at
37°C (Extended Data Fig. 1a). We used the Prestwick Chemical Library,
which consists mostly of off-patent Federal Drug Administration
(FDA)-approved compounds with high chemical and pharmacologi-
cal diversity. Most compounds are administered to humans (1,079),
and they cover all main therapeutic classes (Supplementary Table 1).
Three quarters (835) of the compounds are human-targeted drugs
(that is, have molecular targets in human cells), whereas the rest are
anti-infectives: 156 with antibacterial activity (144 antibiotics, 12 anti-
septics) and 88 effective against fungi, viruses or parasites (Fig. 1a).

All compounds were screened at 20 uM, which is within the range of
what is commonly used in high-throughput drug screens’.

For our screen to be representative of the gut microbiome of healthy
individuals, we selected a set of ubiquitous gut bacterial species
(Supplementary Table 2). Prevalence and abundance in the human gut,
and phylogenetic diversity, were our main selection criteria (Extended
Data Fig. 1b), although we were occasionally constrained by strain una-
vailability or irreproducible growth in mGAM. In total, we included 40
human gut isolates from 38 bacterial species and 21 genera (Escherichia
coli and Bacteroides fragilis were represented by two strains each),
accounting together for 78% of the median assignable relative abun-
dance of the human gut microbiome at genus level (60% at species level;
Extended Data Fig. 1¢). Most strains were commensals, covering 31 of
60 sequenced species detected at a relative abundance of 1% or more
and prevalence of at least 50% in fecal samples from asymptomatic
humans from three continents (Extended Data Fig. 1d). In addition,
the set included four pathobionts (Clostridium difficile, Clostridium
perfringens, Fusobacterium nucleatum and an enterotoxigenic strain
of B. fragilis), a probiotic (Lactobacillus paracasei) and two commensal
Clostridia species (C. ramosum and C. saccharolyticum). All 38 species
are found in the gut of healthy individuals and are part of a larger strain
resource panel for the healthy human gut microbiome®.

We screened all compounds in multiwell plates, measuring optical
density over time to monitor growth, and quantifying the area under
the growth curve (AUC) up to the time point at which controls with
unperturbed growth transitioned to stationary phase (see Methods;
Extended Data Fig. 2). We obtained at least three biological repli-
cates per strain, and these replicates correlated highly (Extended Data
Fig. 2c). We then tested for significant deviations from the normalized
AUC distribution of samples with unperturbed growth, combining
Pvalues across replicates and correcting for multiple hypothesis testing
on the complete matrix of compounds and strains (see Methods;
Extended Data Fig. 2). Drugs that significantly reduced the growth of
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Figure 1 | Systematic profiling of marketed drugs on a representative
panel of human gut microbial species. a, Broad impact of
pharmaceuticals on the human gut microbiota. Compounds from the
Prestwick Chemical Library are divided into drugs used in humans, drugs
used exclusively in animals (vet) and compounds without medical or
veterinary use (non-drugs). Human-use drugs are further categorized
according to targeted organism. Strain-drug pairs (that is, instances in
which a drug significantly reduced the growth of a specific strain; see
Methods) are highlighted with a vertical coloured bar in the matrix.
Bacterial strains are sorted by drug sensitivity. The relative abundances of
each strain in four cohort studies of healthy individuals are displayed on

at least one strain (false discovery rate (FDR) < 0.01), were classified as
hits with anticommensal activity (Supplementary Table 3a), reflecting
their potential to modulate the human gut microbiota.

Of the 156 antibacterials tested, 78% were active against at least one
species, typically with a broad activity spectrum (Fig. 1a, b). Inactive
antibiotics belong mainly to the sulfonamides (which are inactive in
our medium according to the manufacturer’s guidelines), aminoglyco-
sides (which have compromised activity under anaerobic conditions!°)
and specific antimycobacterial drugs. Antibiotics are used to inhibit
pathogens, but as expected, also target gut commensals. The medi-
cal importance of this collateral damage to the resident microbiome
has recently been becoming clearer!!. Nevertheless, to our knowledge,
drug-microbiome species relationships have not previously been
mapped at this scale.

Notably, 27% of the non-antibiotic drugs were also active in
our screen. More than half of the anti-infectives against viruses or
eukaryotes exhibited anticommensal activity (47 drugs; Fig. 1a, b).
Antibacterial activity has been previously reported for many of these
drugs, including the antifungal imidazoles'? (11 in our screen), but
not for others (for example, the antivirals saquinavir and trifluridine).
More noteworthy is the anticommensal activity of 203 (24%) of the
human-targeted drugs. Most were effective against only a few strains,
with the exception of 40 drugs that affected at least 10 strains. Fourteen
of these had, to our knowledge, not been previously reported to have
direct antibacterial activity (Supplementary Table 3b). Among known
human-targeted drugs with anticommensal activity, auranofin has
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the right (boxes correspond to interquartile range (IQR) and central line
to median relative abundance). b, Fractions of drugs with anticommensal
activity by sub-category. Grey scale within bars denotes inhibition
spectrum (the number of affected strains per drug). ¢, Correlation between
species abundance in the human microbiome and drug sensitivity. For
each strain (n =40), the number of drugs that affect its growth is plotted
against its median relative abundance in the human gut microbiome. Lines
depict the best linear fit, rs the Spearman correlation and grey shading
the 95% confidence interval of the linear fit. All drugs, and in particular
human-targeted drugs, inhibit the growth of more abundant species more
than that of less abundant species.

recently been reported to have broad-spectrum bactericidal activity'?,
and the ovulation stimulant clomiphene inhibits a conserved bacterial
enzyme in the synthesis of an essential precursor for cell wall carbohy-
drate polymers'. Such drugs or their scaffolds can be used for repur-
posing towards broad-spectrum antibiotics, especially as many have
minimal inhibitory concentrations (MICs) in the sub-microgram per
millilitre range (Supplementary Table 4). By contrast, the microbial
narrow-spectrum specificity of most human-targeted drugs could aid
the development of microbiome modulators.

Bacterial species showed varied responses to drugs, with the abun-
dant Roseburia intestinalis, Eubacterium rectale and Bacteroides vulgatus
being the most sensitive, and ~-proteobacteria representatives being
the most resistant (Fig. 1a). Overall, species with higher relative abun-
dance across healthy individuals were significantly more susceptible
to human-targeted drugs (P=0.0012 based on Spearman correlation;
Fig. 1c). This suggests that human-targeted drugs have an even larger
impact on the gut microbiome, with key species related to healthy
status'®, such as major butyrate producers (E. rectale, R. intestinalis,
Coprococcus comes) and propionate producers (B. vulgatus, Prevotella
copri, Blautia obeum)'®, and enterotype drivers (P. copri)'’, being
relatively more affected.

Dose relevance and validation of the drug screen

We sought to address how close the screening concentration (20 M)
was to drug concentrations in the terminal ileum and colon, where
most gut microbes reside!®. However, drug concentrations are
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Figure 2 | Evaluating human-targeted drugs with anticommensal
activity. a, Estimated small intestine and colon concentrations and
measured plasma concentrations of human-targeted drugs with (orange)
and without (grey) anticommensal activity in our screen (see Methods;
Extended Data Fig. 3). For both active and inactive compounds, the
median estimated small intestine and colon concentrations are higher than
the screened concentration (20 pM, black vertical lines), whereas plasma
concentrations are lower. Non-hits in our screen generally reached higher
plasma and small intestine concentrations (two-sided Wilcoxon rank sum
test). Box plots: centre line, median; limits, upper and lower quartiles;
whiskers, 1.5x IQR; points, outliers. b, Rarefaction analysis indicates that
anticommensal activity would be discovered for more human-targeted
drugs if we screened additional strains.

systematically measured only in blood; there, human-targeted drugs
have on average an order of magnitude lower concentrations than in
our screen (Fig. 2a, Extended Data Fig. 3). We deduced colon con-
centrations on the basis of drug excretion patterns from published
work, and small intestine concentrations on the basis of daily doses of
individual drugs (Supplementary Table 1) and a measured example of
duodenal concentrations for the well-absorbed drug posaconazole!
(see Methods). Based on these approximations, 20 pM was below the
median small intestine and colon concentration of the human-targeted
drugs tested here (Fig. 2a, Extended Data Fig. 3). Notably, human-
targeted drugs that showed anticommensal activity had lower plasma
and estimated small intestinal concentrations than ones with no such
activity (Fig. 2a; P=0.0061 and P=0.0035, respectively, two-sided
Wilcoxon rank sum test; we have fewer colon concentration estimates
owing to data availability), suggesting that more human-targeted drugs
would inhibit bacterial growth if probed at higher doses, closer to
physiological concentrations. A case in point is metformin, which was
recently identified as the key contributor to changes in the human gut
microbiome composition of patients with type II diabetes?, but lacked
anticommensal activity in our screen. Metformin reaches 10-40 uM
in the plasma of treated patients with type II diabetes, but its small
intestine concentration is 30-300-fold higher®’, which matches our
estimates of small intestine and colon concentrations (1.5 mM). When
we probed for higher, more physiological intestinal metformin concen-
trations, 3 of 22 tested strains were inhibited at concentrations below
1.5mM (Extended Data Fig. 4a).

We also benchmarked our screen with an independent set of
experiments, measuring ICys (the drug concentration conferring 25%
growth inhibition) for 25 selected drugs in a subset of up to 27 strains
(see Methods). This analysis revealed excellent precision (94%), but
slightly lower recall (85%) (Extended Data Fig. 5a, b). False negatives,
that is, drugs with anticommensal activity missed in our screen, were
due to specific chemicals that probably lost activity during screening
(Extended Data Fig. 5d), and our stringent FDR cutoff for calling hits.
Increasing this cutoff to 0.1 would almost double the fraction of drugs
with anticommensal activity (Extended Data Fig. 5¢). In addition,
we found that more species were inhibited at higher concentrations
(Extended Data Fig. 5d, Supplementary Table 4), and that ICy5 values
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were mainly below the estimated gut concentrations and occasionally
below plasma concentrations (Extended Data Fig. 6).

Furthermore, we screened only a representative subset of species,
but the gut microbiome of an individual harbours hundreds of species
and an even larger strain diversity*!. Rarefaction analysis indicates that
if more gut species were tested, the fraction of human-targeted drugs
with anticommensal activity would increase (Fig. 2b).

In summary, we probed human-targeted drugs largely within physio-
logically relevant concentrations and our data are likely to under-report
the impact of human-targeted drugs on gut bacteria.

Concordance with patient data

Having demonstrated that many human-targeted drugs inhibit gut
bacteria in vitro at relevant doses, we searched for evidence that such
effects manifest in vivo in the human gut. We reviewed all available
clinical cohort data from metagenomics association studies and com-
pared it to our screen if studies had enough statistical power and
affected taxa that overlapped with those tested here. We found suit-
able studies for PPIs, AAPs, and seven further drugs, spanning alto-
gether five different drug classes according to Anatomical Therapeutic
Chemical (ATC) classification. All three PPI representatives in our
screen exhibited broad anticommensal activity, similar to the microbi-
ome changes that have been reported in patients taking PPIs** (Fig. 3a):
taxa with reduced abundance in patients exhibited reduced growth in
our screen and taxa enriched in patients were rarely inhibited by PPIs
in vitro (Extended Data Fig. 7a). This suggests that PPIs directly influ-
ence the gut microbiome composition, in addition to changing the stom-
ach pH and thus affecting which bacteria reach the gut>*. Concordance
was similarly high for many microbe-drug associations identified in a
large Flemish cohort” for the immunosuppressive agent azathioprine,
the antidepressant venlafaxine, the anti-inflammatory mesalazine,
aminosalicylate, progesterone, oestrogens and amoxicillin; the only
exception was another antibiotic, nitrofurantoin (Extended Data
Fig. 7b, ¢). We also compared our data to a study that reported a reduc-
tion in Akkermansia levels in the gut of patients treated with AAPs®.
Our screen included six of the ten AAPs investigated in that study. We
found that Akkermansia muciniphila was more sensitive than other
strains to these AAPs (P=0.09; two-sided Wilcoxon rank sum test),
while being more resistant to other human-targeted drugs (P=0.0005,
two-sided Wilcoxon rank sum test; Extended Data Fig. 7d). Finally,
we found high concordance between a longitudinal microbiome study
of patients taking metformin and our IC,5 data for the same drug
(Extended Data Fig. 4b).

Metagenomics association studies and our in vitro study have
distinct limitations. We screened a subset of species, mostly one strain
per species, out of the context of microbial communities and the host.
Cohort studies can be underpowered or biased by methodological
approaches and confounding factors, and may detect indirect effects.
Nonetheless, we find high concordance between the effects of drugs
in vitro and in humans, confirming clinical relevance and direct anti-
commensal activity for the aforementioned cases.

To assess the physiological relevance of our screen further, we inves-
tigated the registered side effects of these drugs in humans. We first
identified side effects enriched in antibiotics for systemic use compared
to those found in all other drugs in the SIDER database??. We iden-
tified 69 side effects that were enriched in antibiotics (see Methods;
Supplementary Table 5). These antibiotic-related side effects occurred
more often in clinical trials of human-targeted drugs with anticommen-
sal activity than in trials of compounds that were inactive in our screen
(P=0.002, two-sided Wilcoxon rank sum test), whereas no significant
difference was observed for placebo-treated patients (Fig. 3b). This
suggests that the collateral damage of human-targeted drugs on gut
bacteria can be detected by higher occurrences of antibiotic-like side
effects in patients.

We then tested whether this side effect signature predicted anti-
commensal activity of human-targeted drugs, which we could have
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Figure 3 | Anticommensal activity of human-targeted drugs in vitro
reflects patient data. a, Changes in microbiome composition of patients
taking PPIs are consistent with drug effects in our screen. Displayed are
Spearman correlation coefficients between in vitro growth inhibition

P values and changes in taxonomic relative abundance after PPI
consumption for corresponding taxa from two studies (Twins UK* and
Dutch?® cohorts; 229 of 1,827 and 211 of 1,815 individuals had taken PPIs,
respectively). The histogram represents the background distribution of
correlations between the in vitro data for all human-targeted drugs and
the in vivo response to PPIs; correlations with PPIs are highlighted by
triangles. b, Human-targeted drugs with anticommensal activity in our
screen had a significantly higher incidence of antibiotic-related side effects
(orange trace shows cumulative distribution, n =285 drug-side effect
pairs) in clinical trials compared to drugs without activity (grey trace,
n=767; P=0.002, two-sided Wilcoxon rank sum test). Dashed lines
indicate the incidence of the same side effects upon placebo treatment,
with no significant difference between active (n = 138) and inactive drugs
(n=474). ¢, Based on similarity to antibiotic-related side effects, we
selected 26 candidate and 16 control drugs for testing for anticommensal
activity. Although both candidate and control drugs inhibited bacterial
growth at higher concentrations, candidate drugs had anticommensal
activity at significantly lower doses than control drugs after normalizing
for estimated intestine concentrations (P=5.6 x 10~7, two-sided Wilcoxon
rank sum test). Box plots as in Fig. 2a, n denotes number of drug-strain
pairs.

missed owing to the low drug concentration we used. We screened 26
candidate compounds that showed enrichment of antibiotic-related
side effects and 16 that did not (control compounds) for effects on the
growth of 18 bacterial strains (Extended Data Fig. 8), in concentrations
up to 2.5 mM (Methods). Twenty-eight of these forty-two compounds
inhibited the growth of at least one strain (Extended Data Fig. 8a-d),
with both the fraction of active compounds and the number of affected
strains being similar for both candidate and control compounds.
However, when we normalized the measured IC,5 by the estimated
intestine concentration (based on the recommended single drug dose)
to make amounts comparable between drugs, a significant difference
was evident. Drugs that were predicted to be active had a median IC,s5
across all drug-strain pairs that corresponded to 4.3 drug doses, com-
pared to 12 for control drugs (P=>5.6 x 1077, two-sided Wilcoxon rank
sum test; Fig. 3¢). The IC,5 corresponds to less than two drug doses in
34% of drugs with predicted activity, compared to just 8% for control
drugs. Similarly, the IC,s is below the estimated colon concentration
for 16/52 (31%) of candidate drug-strain pairs and for only 5/50 (10%)
of control drug-strain pairs (Extended Data Fig. 8e).
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In conclusion, human-targeted drugs with anticommensal activity
have antibiotic-like side effects in humans, and for the few studies avail-
able, consumption of these drugs led to changes in taxa we also detected
to be inhibited in vitro, implying that more drugs with anticommensal
activity reported here will have an impact in vivo.

Features of drugs with anticommensal activity

Drugs from all major ATC indication areas exhibited anticommensal
activity, with antineoplastics, hormones and compounds that target
the nervous system inhibiting gut bacteria more than other medica-
tions (Extended Data Figs 9a, 10). Three ATC subclasses (antimetabo-
lites, antipsychotics and calcium-channel blockers) were significantly
enriched in hits (Extended Data Fig. 9a). Antimetabolites are used as
chemotherapeutic and immunosuppressant agents, with their incorpo-
ration into RNA or DNA, or their interaction with synthesis enzymes
being cytotoxic to human cells. Their molecular targets are often con-
served in bacteria®, explaining the observed effects and raising the
possibility that antibacterial effects may also be directly involved in the
development of mucositis during chemotherapy**.

The enrichment in antipsychotics is intriguing, given that they target
dopamine and serotonin receptors in the brain, which are absent in
bacteria. Although phenothiazines are known to have antibacterial
effects®®, nearly all subclasses of the chemically diverse antipsychotics
exhibited anticommensal activity (Extended Data Fig. 9b). These drugs
targeted a significantly more similar pattern of species than expected
from their chemical similarity (P =2 x 107!, permutation test;
Extended Data Fig. 9¢). This raises the possibility that direct bacterial
inhibition may not only manifest as side effect of antipsychotics, but
also be part of their mechanism of action.

As different ATC indication areas contain chemically similar drugs,
we investigated whether the chemical properties of drugs can influence
their anticommensal activity (Extended Data Fig. 11a). To some degree,
chemically similar human-targeted drugs had more similar effects in
the screen than less similar drugs (Extended Data Fig. 11b). We tested
several compound properties, including complexity, molecular weight,
topological polar surface area (TPSA), volume and hydrophobicity
(XLogP). Complex, heavier and larger compounds preferentially tar-
geted Gram-positive bacteria, whereas Gram-negative bacteria were
protected against such bulkier drugs by their selective outer membrane
barrier (Extended Data Fig. 12). Owing to the vast number of chemical
moieties present in drugs with anticommensal activity, we did not
attempt an exhaustive enrichment analysis. Nevertheless, we did
observe reactive nitro-groups being enriched in drugs with anticom-
mensal activity (P= 6.4 x 107, Fisher’s exact test), indicating that local
chemical properties may confer antibacterial activity.

Human-targeted drugs may boost antibiotic resistance
There is a strong correlation between resistance to antibacterials and
resistance to human-targeted drugs in our data that cannot be explained
simply by general cell envelope composition, as there is no clear divi-
sion between Gram-positive and Gram-negative bacteria (Fig. 4a). We
reasoned that more specific but common mechanisms could confer
resistance to both drug groups. To test this hypothesis, we selected
TolC, known to efflux several antibiotics in E. coli and other bacteria®,
as a prominent representative of a general resistance mechanism against
antibiotics. We profiled an E. coli AtolC mutant and its parental wild
type (BW25113) against the Prestwick Chemical Library. E. colilacking
TolC not only became more sensitive to antibacterials (22 hits more
than wild type), but also became equally more sensitive to human-
targeted drugs (19 additional hits; Fig. 4a, Supplementary Table 6).
This effect is not specific to E. coli or TolC, as a more antibiotic-
resistant B. uniformis strain (HM-715) was also equally more resistant
to human-targeted drugs (Fig. 4a).

While our data support a strong role for common general resist-
ance mechanisms, there are also outliers to this trend, the most prom-
inent being C. difficile and P. distansonis (Fig. 4a). For both, strong
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Figure 4 | Antibiotic resistance mechanisms protect against human-
targeted drugs. a, Susceptibility to antibacterial agents and human-
targeted drugs correlates across the 40 tested strains (Spearman
correlation, r¢= 0.6 and a line depicting the nonlinear least-squares
estimate of the odds ratio, OR = 0.06), suggesting common resistance
mechanisms against both drug types. Knockout of a major antibiotic efflux
pump (tolC) in the laboratory E. coli strain BW25113 (which behaves like
the other two commensal E. coli strains in the screen) makes E. coli equally
more sensitive to both antibacterials and human-targeted drugs. Two
antibiotic-resistant isolates of B. fragilis (black square, HM-20) and

B. uniformis (black diamond, HM-715) were screened in addition to the
main screen, with only the latter showing a similar increase in resistance
towards human-targeted drugs. b, Chemical genetic screen of an E. coli
antibiotic resistance?® contrasted with relatively weaker resistance
to human-targeted drugs. Similarly, an antibiotic-resistant B. fragilis
strain, HM-20, was not equally resistant against human targeted drugs
(Fig. 4a). These examples make the important distinction between
specific antibiotic resistance mechanisms, which are irrelevant for
resistance to human-targeted drugs, and more predominant, general
mechanisms, which confer resistance to both drug groups.

To elucidate mechanisms conferring resistance against human-
targeted drugs more systematically, we used a chemical genetic
approach? and screened a genome-wide overexpression library in
E. coli against seven non-antibiotics (six human-targeted drugs and
niclosamide, an antiparasitic) that showed broad anticommensal
activity in our screen. As wild-type E. coli was one of the most resist-
ant gut species (Fig. 4a), we used the AtolC mutant, which is sensitive
to most of these drugs, allowing us to probe further resistance mech-
anisms. For all tested drugs except metformin, overexpression of tolC
rescued E. coli growth, as expected. Furthermore, we identified a num-
ber of diverse transporter families that contributed to resistance against
these drugs (Fig. 4b). Many of them have previously been linked to anti-
biotic resistance®*~3, Resistance was also acquired by overexpression
of transcription factors (for example, rob, which controls efflux pump
expression®*), the ribosome maturation factor rrmA, which plays a role
in resistance to the antibiotic viomycin®, and detoxification mech-
anisms (nitroreductases modify nitro-containing antibiotics®®). For
methotrexate, we validated the known primary target in bacteria (E. coli
dihydrofolate reductase)?, illustrating the potential of this approach
to identify bacterial mechanism of action of human-targeted drugs®.

All of these results point to an overlap between resistance mecha-
nisms against antibiotics and against human-targeted drugs, implying a
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antibiotic resistance. Among them are genes encoding for transporters
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size difference from the median growth of all strains in the drug (more
than sixfold difference), and dot size the significance (FDR-corrected

P <0.1). Control denotes the growth of the library without drug.

hitherto unnoticed risk of acquiring antibiotic resistance by consuming
non-antibiotic drugs.

Discussion
We report a systematic drug screen against a reference panel of
human gut bacteria. Twenty-seven per cent of non-antibiotics (24%
of human-targeted drugs) inhibited the growth of at least one species.
As we demonstrated, this is likely to be an underestimate owing to
stringent thresholds for calling hits and the limited selection of bacterial
strains screened. Many of the direct in vitro effects described here may
translate into microbiome shifts in vivo, because (i) we used concen-
trations within the range of what is estimated to be found in the human
gut for many drugs; (ii) our observations agree with the few clinical
microbiome studies for which medication has been recorded; and
(iii) the side effects of anticommensal drugs in humans resemble those
of antibiotics. Thus, our results underscore the necessity of accounting
for potential medication-related confounding effects in future micro-
biome disease association studies. Moreover, one could speculate that
pharmaceuticals, used regularly in our times, may be contributing to a
decrease in microbiome diversity in modern Western societies®,
Although the antibacterial potential of human-targeted drugs has
been profiled repeatedly in the quest for new antimicrobials, previ-
ous efforts have focused on pathogenic and often multi-drug-resistant
(MDR) bacterial species”!*!4, We demonstrate that some of these
species or their commensal relatives are the most drug-resistant in
our screen (for example, ~-proteobacteria: Bilophila wadsworthia and
E. coli were affected by 2 and 4-7 human targeted drugs, respectively),
that many human-targeted drugs have species-specific effects, and
that resistance mechanisms to antibiotics and human-targeted drugs
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partially overlap (thus, MDR species may be more resistant to human
drugs too). Together, these findings explain why previous efforts have
failed to register how many human-targeted drugs can inhibit bacteria.

Many pharmaceuticals influence the human gut microbiota. As
gut bacteria, in turn, can also modulate drug efficacy and toxicity*®,
the emerging drug-microbe network could guide therapy and drug
development. The resource described here opens up new avenues for
translational applications in mitigating drug side effects, improving
drug efficacy, repurposing of human-targeted drugs as antibacterials
or microbiome modulators, and controlling antibiotic resistance (see
Supplementary Discussion). However, before any translational appli-
cation can be pursued, our in vitro findings need to be tested rigorously
in vivo (in animal models, pharmacokinetic studies and clinical trials)
and understood better mechanistically.

Online Content Methods, along with any additional Extended Data display items and
Source Data, are available in the online version of the paper; references unique to
these sections appear only in the online paper.
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METHODS
Bacterial strains and growth conditions. Bacterial isolates used in this study were
purchased from DSMZ, BEI Resources, ATCC and Dupont Health & Nutrition, or
were gifts from the Denamur Laboratory (INSERM). All strains were recovered in
their recommended rich medium (resource and literature). The screen and valida-
tion experiments were performed in mGAM (HyServe GmbH & Co.KG, Germany,
produced by Nissui Pharmaceuticals)*!, as almost all species could grow robustly
in this medium in a manner that is reflective of their gut abundance®. Because we
selected for robust growth, potential positive effects of drugs on growth could not
be detected. Only one strain was grown in Todd-Hewitt Broth (Sigma-Aldrich),
one in a 1:1 mixture of mMGAM and gut microbiota medium*? and, for one strain,
mGAM was supplemented with 60 mM sodium formate and 10 mM taurine (see
also Supplementary Table 2). All media were pre-reduced at least 1 day before use
under anoxic conditions in an anaerobic chamber (Coy Laboratory Products Inc.)
(2% Hy, 12% COy, rest N;) and all experiments were performed under anaerobic
conditions at 37 °C unless specified otherwise. No statistical methods were used
to predetermine sample size.
Species selection. To select a representative core of species in the human gut
microbiome, we analysed 364 fecal metagenomes from asymptomatic individuals
from three continents® ¢, Species were defined and their abundance quantified as
previously described?”*®. A core set of 60 microbiome species was defined
(Extended Data Fig. 1b-d), and from this core, 31 species were selected for this
screen. Seven additional species were selected for reasons explained in the main text.
Screen of the Prestwick Chemical Library. Preparation of screening plates. The
Prestwick Chemical Library was purchased from Prestwick Chemical Inc. with
compounds coming dissolved in dimethyl sulfoxide (DMSO) at a concentration
of 10mM. Compounds were re-arrayed to redistribute the DMSO control wells in
each plate and to minimize the total number of 96- and 384-well plates (4 x 384-
well plates or 14 x 96-well plates). At the same time, drugs were diluted to a con-
centration of 2mM to facilitate further aliquoting, and these plates were stored at
—30°C. For each experimental batch (10 replicates in 96-well plates; 20 replicates
in 384-well plates), we prepared drug plates in the respective growth medium
(2 for 96-well plates, 1x for 384-well plates), and stored them at —30°C until use
(maximum 2 months). Before inoculation, plates were thawed and pre-reduced in
the anaerobic chamber overnight. The Biomek FXP (Beckman Coulter) liquid han-
dling system was used for all rearranging and aliquoting of the library compounds.
Inoculation. Strains were grown twice overnight to make sure we had a robustly
and uniformly growing culture before inoculating the screening plates. For 96-well
plates, the second overnight culture was diluted to fresh medium in order to reach
2x the desired starting optical density (OD) at 578 nm. Next, 50 pl of this diluted
inoculum was added to wells containing 50 ul of 2 x concentrated drug in the
respective culture medium using a multichannel pipetter. The final drug concentra-
tion was 20 pM and each well contained 1% DMSO. We inoculated 384-well plates
with a 384 floating pin replicator VP384FP6S (V&P Scientific, Inc.), transferring
1 ul of appropriately diluted overnight culture to wells containing 50 jul of growth
medium, 1% DMSO and 20 pM drug. For bacterial species that reached lower OD
in overnight cultures we transferred twice 1l of appropriately adjusted OD culture.
For both 96- and 384-well plates, the starting OD was 0.01 or 0.05, depending on
the growth preference of the species (Supplementary Table 2).
Screening conditions. After inoculation, plates were sealed with breathable membranes
(Breathe-Easy) to prevent evaporation and cross-contamination between wells, and
incubated at 37 °C without shaking. Growth curves were acquired by tracking OD
at 578 nm with a microplate spectrophotometer (EON, Biotek). Measurements were
taken every 1-3h after 30-60s of linear shaking, initially manually but later automat-
ically using a microplate stacker (Biostack 4, Biotek), fitted inside a custom-made
incubator (EMBL Mechanical Workshop). We collected measurements for 16-24 h.
Each strain was screened in at least three biological replicates.
Normalization of growth curves and quantification of growth. Growth curves were
analysed by plate. All growth curves within a plate were truncated at the time of
transition from exponential to stationary phase. The end of the exponential phase
was determined automatically by finding the peak OD (using the median across
all compounds and control wells, and accounting for a small increase during the
stationary phase) and verified by inspection. Using this time point allowed us to
capture the effects of drugs on lag phase, growth rate and stationary phase plateau
(Extended Data Fig. 2a). Time points with sudden spikes in OD (for example,
caused by condensation) were removed, and growth curves were discarded com-
pletely if they had too many missing time points (Extended Data Fig. 2a). Similarly,
growth curves were discarded if the OD fell far outside the normal range (for
example, caused by coloured compounds). Three compounds had to be completely
excluded from the analysis, as they caused aberrant growth curves: Chicago sky
blue 6B, mitoxantrone and verteporfin.

Growth curves were processed by plate to set the median OD at the start and
end time points to 0 and 1, respectively. Then we defined reference compounds

ARTICLE

across all replicates as those that did not reduce growth significantly for most drugs,
had measurements for >95% of all replicates, and for which the final OD was
>0.5 for more than 142 out of 152 replicates. We used these reference compounds
as representatives of uninhibited growth. As wells containing reference compounds
outnumbered control wells within a plate, we used control wells only later to
verify the P value calculation (Extended Data Fig. 2d). After identifying reference
compounds, we rescaled growth curves such that the median growth of reference
compounds at the end point was 1.

While growth curves in control wells and most wells with reference compounds
followed the expected logistic growth pattern, a variety of deviations were observed
for drugs that influenced growth. To quantify growth without relying on assump-
tions about the shape of the growth curve, we calculated the area under the curve
(AUC) using the trapezoidal rule. Although we set the median starting OD to 0, the
ODs of individual wells deviated from this. We used two methods to correct for this
and determine the baseline for each growth curve (Extended Data Fig. 2a). First, a
constant shift was assumed, subtracting the same shift from all time points of the
growth curve such that the minimum is zero. Second, an initial perturbation was
assumed that affects initial time points more than later time points (for example,
condensation). To correct this, we first subtracted a constant shift as above, and
then rescaled the curve such that a time point with an uncorrected OD of 1 also
had an OD of 1 after correction. AUCs were calculated for both scenarios, rescaled
such that the AUC of reference compounds was 1, and then for each compound
the baseline correction that yielded an AUC closest to 1 (that is, normal growth)
was selected.

AUC: are highly correlated to final ODs, with a Pearson correlation of 0.95

across all compounds and replicates. Nonetheless, we preferred to use AUCs to
decrease the influence of the final time point, which will contain more noise than
a metric based on all time points.
Identification of drugs with anticommensal activity. We detected hits from nor-
malized AUC measurements using a statistical method that controls for multiple
hypothesis testing and varying data quality. We fitted heavy-tailed distributions
(scaled Student’s t-distribution®) to the wells containing reference compounds
for each replicate and, separately, to each individual plate. These distributions
captured the range of AUCs expected for compounds that did not reduce growth,
and represented the null hypothesis that a given drug did not cause a growth
defect in the given replicate or plate. We calculated one-sided P values from the
cumulative distribution function of the fitted distribution. Within a replicate, each
compound was associated with two P values: one from the plate on which it was
measured, and one for the whole replicate. Of those two, the highest P value was
chosen (conservative estimate) to control for plates with little or high noise, and
varying levels of noise within the same replicate.

The resulting P values were well-calibrated (that is, the distribution of P values
was close to uniform with the exception of a peak at low P values, Extended Data
Fig. 2d) and captured the distribution of controls, which were not used for fitting the
distribution and kept for validation. We then combined P values for a given drug and
strain across replicates using Fisher’s method. Lastly, we calculated the FDR using
the Benjamini-Hochberg method*® over the complete matrix of P values (1,197
compounds by 40 strains). After inspecting representative AUCs for compound-
strain pairs at different FDR levels, we chose a conservative FDR cut-off of 0.01.
Drug indications, dose, and administration. We annotated drugs by their primary
target organism on the basis of their WHO ATC classification, or, if there were
uncertainties, based on manual annotation. Compounds were classified as: antibac-
terial drugs (antibiotics, antiseptics), anti-infective drugs (acting against protozoa,
fungi, parasites or viruses), human-targeted drugs (that is, drugs whose mechanism
of action affects human cells), veterinary drugs (used exclusively in animals), and
finally non-drugs (which can be drug metabolites, drugs used only in research, or
endogenous substances). If a human-use drug belonged to several classes, the drug
class was picked according to this order of priority (from high to low): antibacterial,
anti-infective, and human-targeted drug. This ensured that drugs used also as
antibacterials were not classified in the other two categories.

Drugs from the Prestwick Chemical Library were matched against STITCH
4 identifiers”! using CART®2. Identifiers that could not be mapped were anno-
tated manually. Information about drug indications, dose and administration was
extracted from the ATC classification system and Defined Daily Dose (DDD)
database. Dose and administration data were also extracted from the Drugs@
FDA resource. Doses that were given in grams were converted to mol using the
molecular weight stated in the Prestwick library information files. When the dose
guidelines mentioned salt forms, we manually substituted the molecular weight.
Dose data from Drugs@FDA stated the amount of drug for a single dose (for
example, a single tablet). Analysing the intersection between Drugs@FDA and
DDD, we found that the median ratio between the single and daily doses was two.
To combine the two data sets we therefore estimated the single dose as half of the
daily dose (Supplementary Table 1).

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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In general, it is difficult to estimate effective drug concentrations in the intestine,
as those depend on the dose, the speed of dissolution, uptake and metabolization by
human cells and by bacteria, binding to proteins, and excretion mechanisms into
the gut. To estimate gut concentrations of drugs based on their dose with a simple
model, we relied on an in situ study for posaconazole'®. When 40 mg (57 pumol) of
the drug is delivered to the stomach in either an acidic or a neutral solution, the
maximum concentration in the duodenum reaches 26.3 £10.3 or 13.6 + 5.8 uM,
respectively. This is equivalent to dissolving the drug in 300 ml (240 ml of water to
swallow the pill as recommended for bioavailability/bioequivalence studies plus
~43 ml resting water in the small intestine®®) and an absorption rate of 90%. We
collected doses for as many human-targeted drugs as we could find and used the
above assumption to estimate small intestine concentrations. To estimate colon
concentrations, we relied on reported fecal excretion data (Supplementary Table 1,
gathered from DrugBank 5.0°* and across the literature) assuming a single
daily dose, 24 h transit time>® and a volume of distribution in the colon of 0.6 1°¢
(Extended Data Fig. 3).
1C,5 determination and screen validation. To validate our screen, we selected
25 drugs including human-targeted drugs (19), antiprotozoals (3), one antipar-
asitic, one antiviral and one ‘non-drug’ compound. The human-targeted drugs
spanned five therapeutic classes (ATC codes A, G, L, M and N). Our selection com-
prised mostly drugs with extended antibacterial activity in our screen (19 drugs
hit >10 strains). This bias ensured that we could also evaluate false positives. We
chose 15 strains to test ICy5s (that is the minimal concentration of drug that causes
25% growth inhibition), spanning different phyla (5) and including both sensitive
(E. rectale, R. intestinalis) and resistant species (E. coli ED1a).

Compounds for validation were purchased from independent sources
(Supplementary Table 1) and dissolved at 100 starting concentration in DMSO.
Twofold serial dilutions were prepared in 96-well U-bottom plates (as for the
screen). Each row contained a different drug at eleven twofold dilutions and a
control DMSO well in the middle of the row (in total eight drugs per plate). These
master plates were diluted to 2 x assay concentration and 2% DMSO in mGAM
(50 1) and stored at —30°C (<1 month). For the assay, plates were pre-reduced
overnight in the anaerobic chamber, and mixed with an equal volume (50 ul)
of appropriately diluted overnight culture (prepared as described for screening
section) to reach a starting ODs75 of 0.01 and a DMSO concentration of 1% across
all wells. ODs;g was measured hourly for 24 h after 1 min of shaking. Experiments
were performed in two biological replicates.

Growth curves were converted to AUCs as described above, using in-plate

control wells (no drug) to define normal growth. For each concentration, we cal-
culated the mean across the two replicates. We further enforced monotonicity to
conservatively remove noise effects: if the AUC decreased for lower concentrations,
it was set to the highest AUC measured at higher concentrations. The IC,5 was
defined as the lowest concentration for which a mean AUC of below 0.75 was
measured. In 68% of cases, ICyss were equal between replicates and in a further
22%, there was a twofold change between replicates, which is within the twofold
error margin reported for inhibitory concentrations®. Additionally, MIC as listed
in Supplementary Table 4 was defined as the lowest concentration for which the
AUC dropped below 0.1. In the large-scale screen, we detected significant growth
reductions, which do not necessarily correspond to complete growth inhibition
(Extended Data Fig. 2b). To ensure comparability between the results of the val-
idation procedure and the screen, we used the IC,5 metric for benchmarking. As
inhibitory concentration calculations are known to have a twofold error margin®,
we considered an IC,5 of 10-40 uM as being in agreement with the screening result
(Extended Data Fig. 5a, b). A higher number of false negatives implies that more
human-targeted drugs are likely to have anticommensal activity.
Analysis of side effects. Side effects of drugs were extracted from the SIDER
4.1 database?? using the mapping between Prestwick compounds and STITCH 4
identifiers described above. In SIDER, side effects are encoded using the MedDRA
terminology, which contains lower-level terms and preferred terms. Of these, we
used the preferred terms, which are more general. We excluded rare side effects
that occurred for fewer than five drugs from the analysis. Drugs with fewer than
seven associated side effects were discarded®®. In a first pass, we identified side
effects associated with antibiotics in SIDER, by calculating for each side effect its
enrichment for systemic antibiotics (ATC code J01) versus all other drugs using
Fisher’s exact test (P value cut-off: 0.05, correcting for multiple hypothesis testing
using the Benjamini-Hochberg method). Antibiotics are typically administered
in relatively high doses, and some of the enriched side effects might therefore
be caused by a dose-dependent effect (for example, kidney toxicity). We there-
fore used an ANOVA (type II) to test whether the presence of side effects for a
drug was more strongly associated with it being an antibiotic or with its (log-
transformed) dose. Side effects that were more strongly associated with the dose
were excluded from the list of antibiotic-related side effects.

Data on the incidence rates of side effects in patients was also extracted from
SIDER 4.1. As different clinical trials can report different incidence rates, we com-
puted the median incidence rate per drug-side effect pair. As SIDER also contains
data on the incidence of side effects upon placebo treatment, we were able to ensure
the absence of systematic biases.

Experimental validation of side effect-based predictions. Selected candidate and
control compounds belonged to multiple therapeutic classes (ATC codes A, B,
C,G,H,L, M, N, S for candidate compounds and A, C, D, G, H, M N, R, S, V for
control compounds). Compounds of interest were purchased from independent
sources (Supplementary Table 1) and if possible, dissolved at 5mM concentra-
tion in mGAM. Lower concentrations were used when the solubility limit was
reached. Solutions were sterile filtered, and three fourfold serial dilutions were
arranged in 96-well plates, aiming at covering a broad range of drug concentrations.
Inoculation and growth curve acquisition was performed as described for the IC,5
determination experiments.

Chemical genetics in E. coli. Conjugation of the TransBac overexpression plasmid
library into E. coli AtolC. The TransBac library, a new E. coli overexpression
library based on a single-copy vector®® (H.D. and H.M., unpublished resource)
was conjugated in the BW25113 AtolC::Kan strain. The receiver strain (BW25113
AtolC::kan) was grown to stationary phase in LB medium, diluted to an ODs7g of 1,
and 200 pl was spread on an LB plate supplemented with 0.3 mM diaminopimelic
acid (DAP). Plates were dried for 1h at 37°C and then a 1536 colony array of the
library carried within a donor strain (BW38029 Hfr (CIP8 oriT::cat) dap™ *°) was
pinned on top of the lawn. Conjugation was carried out at 37 °C for ~6h, and the
first selection was done by pinning on LB plates supplemented with tetracycline
only (10 pg/ml) and growing overnight. Two more rounds of selection followed
on LB plates containing both tetracycline (10 pg/ml) and kanamycin (30 ug/ml)
to ensure killing of parental strains and select only for t0/C mutants carrying the
different plasmids.

Chemical genetic screen. The screen was carried out under aerobic conditions on
solid LB Lennox medium (Difco), supplemented with 30j1g/ml kanamycin, 10 pg/ml
tetracycline, the appropriate drug, and 0 or 100 uM IPTG. Drugs were used at
the following sub-inhibitory concentrations for the tolC mutant: diacerein 20 pM,
ethopropazine hydrochloride 160 1M, tamoxifen citrate 20 WM, niclosamide 1.25pM,
thioridazine hydrochloride 40 uM, methotrexate 320 pM, or for the wild type:
metformin 100 mM. The 1536 colony array of BW25113 AtolC::kan mutant car-
rying the TransBac collection was pinned on the drug-containing plates, and plates
were incubated for 16-38 h at 37°C. In the case of metformin we used the version
of the TransBac library in which each plasmid complements its corresponding
barcoded single-gene deletion mutant®?, since we did not need to use the AtolC
background to sensitize the cell. Growth of this library was determined at 0 and
100 mM metformin (both in the presence of 0, 50 and 100 uM IPTG). All plates
were imaged using an 18-megapixel Canon Rebel T3i and images were processed
using the Iris software™’.

Data analysis. We used colony size to measure the fitness of the mutants on the
plate. For standardization of colony sizes, we subtracted the median colony size
and then divided by a robust estimate of the s.d. (removing outliers below the
Ist and above the 99th percentile). We found edge effects affecting up to five
rows and columns around the perimeter of the plate. We therefore first stand-
ardized colony sizes across the whole plate using only colony sizes from the
inner part of the plate as reference. To remove the edge effects, we subtracted
from each column its median colony size, and then from each row its median
colony size. Finally, we standardized the adjusted colony sizes using the whole
plate as reference. The distribution of adjusted colony sizes was right-skewed
(that is, more outlier colonies with larger sizes), suggesting a log-normal distri-
bution. At the same time, the presence of outliers suggested that a logarithmic
equivalent of the Student’s t-distribution with variable degree of freedom*’
would be more suitable. We fitted such a distribution for each plate and cal-
culated P values for both tails of the distribution. This approach assumes that
the overexpression of most genes does not affect growth in response to drug
treatment. P values were combined using Fisher’s method across replicates and
IPTG concentrations (since we noticed that different IPTG concentrations
resulted in largely the same results—that is, plasmids are leaky). We corrected
for multiple hypothesis testing for each drug individually using the Benjamini-
Hochberg method®’.

Analysis of common resistance mechanisms. To determine a relationship between
the number of human-targeted drugs (k) and the number of antibacterial drugs
(a) that affect each strain, we determined the odds ratio (OR):

OR= -4
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where H=203 and A = 122 are the numbers of human-targeted and antibacterial
drugs that show activity against any strain, respectively. We computed the nonlinear
least-squares estimate for OR using the following equation:

o =ORx 2

H-h A—a
Data availability. Data are available from FigShare: http://dx.doi.org/10.6084/
m9.figshare.4813882. All data generated during this study are included in this
published article and its Supplementary Information files.
Code availability. Scripts for analysing data and generating figures are available at
https://git.embl.de/mkuhn/drug_impact_gut_bacteria. A snapshot of the reposi-
tory has been deposited together with the data.
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Extended Data Figure 1 | See next page for caption.
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Extended Data Figure 1 | Screen set-up and species selection. a, Drugs
from the Prestwick Chemical Library (arranged in either 96- or 384-well
format) were diluted in growth medium (usually mGAM) and pre-reduced
in a Coy anaerobic chamber before inoculation with one of forty different
human gut microbes. Bacterial growth was monitored for 16-24h at 37°C.
Growth curves were acquired at least in triplicate for each drug-microbe
interaction (see Methods). b, Species with a minimum relative abundance
of 1% in at least one sample and a prevalence of 50% across samples

(the latter estimated by rarefying to 10,000 reads mapping to taxonomic
markers) were included in the set of core species. Boxplots show relative
abundances of core species grouped by genus (according to NCBI
taxonomy) and coloured by phylum (see key). The inner box indicates

the IQR, with the median as black vertical line; the outer bars extend to
the 5th and 95th percentiles; circles, outliers. To the right of the boxplots,
prevalence is depicted by bars, and next to this the species diversity is

ARTICLE

shown; grey boxes indicate species represented in the screen with box
widths corresponding to mean relative abundance within the genus.

¢, Relative abundance of genera of which at least one species was
represented in the screen cumulates to 78% of the assignable fraction of
reads (median across all samples, upper panel); first four boxplots show
abundance within each study identified by country codes underneath
(DK: Denmark; ES: Spain; US: United States; CN: China) 346, When
directly cumulating the relative abundance of represented species the
corresponding median is 60% (lower panel). Boxes span the IQR and
whiskers extend to the most extreme data points up to a maximum

of 1.5 times the IQR. d, Core species are shown in the order of their
median abundances across all samples. Relative abundance boxplots and
prevalence bars are defined as in b and grey boxes underneath indicate
species screened in this study. Numbers in brackets correspond to specl
cluster identifiers (version 1)%.
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Extended Data Figure 2 | See next page for caption.
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Extended Data Figure 2 | Data analysis pipeline for identifying
compounds with anticommensal activity. a, Schematic overview of the
data analysis pipeline. All steps (determination of time cutoff and removal
of noisy points; normalization and selection of reference compounds;
baseline correction and AUC calculation; and hit calling) are explained in
detail in the Methods. On the first panel, dashed curves in the righthand
plot depict the three possible effects that a drug can have on the growth

of a microbe: increase the lag phase, decrease the growth rate or the
stationary phase plateau. All effects are captured by cutting off the growth
curves upon transition to stationary phase for most compounds (most
drugs do not affect growth). On second panel, median growth rates for
two drugs on same plate are depicted and normalized, whereas baseline
correction (third panel) is applied at the individual wells. b, Growth curves
(top, normalized OD) of Bacteroides ovatus in three exemplary drug cases

ARTICLE

for the three biological replicates (meclofenamic acid (red), moricizine
(green) and diacerein (blue)). Light and dark grey shades represent

the 50% and 90% confidence intervals for normal growth, respectively.
Bottom, normalized AUC histograms for all drugs in the three biological
replicates for B. ovatus. Meclofenamic acid is just below the hit threshold,
moricizine is a hit with partial but strong growth inhibition, and diacerein
almost completely inhibits the growth of B. ovatus. ¢, For most species,
correlation between replicates is very high (median: 0.88). d, For both
controls and reference compounds, P values were approximately uniformly
distributed. Determining the background distribution of uninhibited
growth using reference compounds is validated by their very similar
behaviour with control wells. Other drugs (that is, drugs not used as
reference compounds) show clear enrichment of low P values.
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Extended Data Figure 3 | Anticommensal activity relative to
compound- and compartment-specific drug concentrations. We made
a simplified pharmacokinetic estimation of small intestine and colon
concentrations by assuming that one dose of an orally administered drug
(extracted from Drugs@FDA and Daily Defined Dose (DDD) of the ATC)
reaches the intestine and is dissolved or absorbed similarly to the well-
absorbed drug posaconazole'® (Supplementary Table 1). After absorption
into the liver via the portal circulation, the drug enters circulation through
the hepatic veins and reaches its characteristic plasma concentration. The
two main routes of drug elimination are either secretion via kidneys and
urine or secretion into the intestine via the biliary duct. In the intestine,
drugs can be reabsorbed in a circuit called the enterohepatic cycle or
excreted in stools. Compounds that are either poorly absorbed in the
small intestine or secreted by bile reach the large intestine. Considering
the measured excreted fraction of the drug in faeces (both changed and
unchanged compound, as we do not know whether drug is metabolized

ARTICLE

in liver or gut), and assuming a large intestinal transit time of 24 h>® and

a volume of distribution in the colon of 0.6 1°%, we estimated the colon
concentrations of the human-targeted drugs in our screen (Supplementary
Table 1). Histograms for drug dose, plasma concentration, estimated small
intestine concentration, urinary and fecal excretion and estimated colon
concentration depict the respective distributions for human-targeted
drugs, colour coded according to their anticommensal behaviour in our
screen. Dashed lines indicate medians and vertical lines highlight the drug
concentration used in our screen (20 uM). Interactions between drugs

and microbiota are possible throughout the entire gastrointestinal tract,
with microbial load having a gradient-like distribution (ileum and colon
containing the largest numbers); this can be disturbed during disease'®.

In addition, drugs can be modified at several stages: by host digestive and
intestinal epithelial enzymes, by phase I and phase II metabolism in the
liver and by microbial enzymes. Some of these processes neutralize each
other, resulting in reconversion into the original compound.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



ARTICLE

a b

o
§5°
100.000 pM §S
§a o+
38
= 8
E g8 0
2=
£ 1.000 M 15mM S E
E £ g
1
& £ A
& g3 —8 "
0 g ¢
20 uM A
10 uM ¥
A
16403 18404 18405
R RS w o @ m oL ow GO 9 F
SS5§588¢83¢8s58s855835s§38¢ (Cas per strain (uM)
E285 58858 e£S33808888588
2 S8y EEOSE = = =g ;3 EES =8
o = Q =S .3 T egdg - E N o ] S &
2o mgo;?sgfemﬁma-ag:&i;u%a Treatment duration ~ Species
w : m -% o E ] w E o E L & 2months ®  Fusobacterium nucleatum
o E :‘ o < ® 4 months A Clostridium perfringens
;Z ® 6manths ®  Escherichia col
<+ Streptococcus parasanguinis
Extended Data Figure 4 | Effects of metformin in gut microbiota interfere with bacterial growth if doses were to be increased towards drug-
in vivo correlate with its in vitro activity. a, IC,ss of the antidiabetic and body-site-specific concentrations. b, ICyss of metformin correlate
drug metformin for a selection of 22 strains. Metformin did not inhibit well with its observed effects in humans®!, based on the four species
any species in our screen as the concentration used, 20 uM (red line), is that overlapped between the two studies. Significant treatment effects
below the ICy5 of all strains. However, at its estimated small intestinal and on the species level were mapped to our set of strains for which we had
colon concentration of 1.5 mM (blue line), metformin would inhibit 3 of determined IC,ss.

22 tested strains. This exemplifies that more human-targeted drugs would
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© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



a  Effect of proton-pump inhibitors in vivo and in vitro

Actinobacteria
L Actinobacteria
L Bitidobacteriales
- Bifidobacteriaceas
L Bifidobacterium
Bacteroidetes
L Bacteroidia
L Bacteroidales
L Bacteroidaceae
L Bacteroides
L fragilis [ ]
“ Porphyromonadaceae
I Parabacteroides @ - o
Firmicutes . 1 m )

L Bacilli
L Lactobacillales

L Lactobacillaceae
L Lactobacillus
- Streptococcaceae ‘
L Streptococcus
L Clostridia
L Clostridiales
L Clostridiaceas
L Clostridium
L perfringens
L Lachnospiraceas -]
L Coprococcus L] ]
L Ruminococcaceae [ ]
L Ruminococcus ®
= Veillenellaceas
L Veillonella e
L parvula L
Proteobacteria
- Gammaproteobacteria ®
L Enterobacteriales
L Enterobacteriaceae
L Escherichia
L coli

con B

( X ]

50 1e-05 1e.03
g-value of

anticommensal activity

g-value in cohort study @ 001 @ 1e-04 @ 15-06. 1e-30

025 0.00 025 1e-01
Association coeffplélent
in cohort study

study Dutch cohort study (rescaled) @  Twins UK
d : ? e
Atypical antipsychotics (N = 7)
Akkermansia muciniphila » L] . . . (] 0.09
Other species L 1 1 =1
All antipsychotics (N = 37)
Akkermansia muciniphila 1 —_ 0.02
Other species I ] p=Y

All human-targeted drugs (N = 835)
Akkermansia muciniphila L 1 I
0.00 0.25 0.50 075 1.00
p-value of anticommensal activity

Other species

Extended Data Figure 7 | Concordance of drug in vitro species
susceptibilities and drug-mediated shifts in microbiome composition
of patients. a, Association coefficients between PPI usage and relative
taxonomical abundance in faecal microbiomes of PPI users from two
studies (twins, UK cohort, green?; three independent cohorts from the
Netherlands?, blue) (left) are compared to in vitro growth inhibition of
isolates with same taxonomic rank in the presence of PPIs (omeprazole,
lansoprazole and rabeprazole) as assessed by FDR-adjusted P values

(g values) in our screen (right). Point size in the left panel corresponds
to the g value as reported in the original study. Taxa that were reduced in
patients (negative association coefficient, left of vertical black line) were
mostly inhibited by PPIs in our screen (g value below 0.01, left of vertical
black line), whereas enriched taxa were insensitive to PPIs. Box plots show:
centre line, median; box limits, upper and lower quartiles; whiskers,

1.5x IQR; points, outliers. For fewer than 10 data points, all points

are shown individually. b, Spearman correlation coefficients between
association coefficients of faecal microbiome composition after
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consumption of amoxicillin or azathioprine” and the screen P values.
The histogram represents the background distribution of correlations
between the in vitro data for all human-targeted drugs and the in vivo
response to these drugs; correlations with amoxicillin or azathioprine are
highlighted by triangles ¢, Comparisons between association coefficients
and drugs from different therapeutic classes as assessed by Falony

et al.” and our in vitro data. d, A study of a cohort of patients with bipolar
disease® reported a significant decrease in abundance of Akkermansia
upon treatment with atypical antipsychotics (AAP). When we compared
distributions of adjusted P values from our screen for different strains,
Akkermansia muciniphila was significantly more sensitive than all other
strains to antipsychotics in general and APP in particular (P=0.02 and
P=0.09, two-sided Wilcoxon rank sum test). By contrast, A. muciniphila
is relatively more resistant than other strains across all human-targeted
drugs (P=0.0005, two-sided Wilcoxon rank sum test). Violin plot shows
estimated density of points with the estimated median as vertical bar. For
fewer than 10 data points, all points are also shown individually.
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Extended Data Figure 8 | Evaluation of anticommensal activity
predictions based on side-effects. a, IC,ss of 26 candidate compounds

(P value for enrichment of antibiotic-related side effects <1 x 1074, using a
one-sided Fisher’s exact test) and 16 control compounds (see also d of this
Figure) were determined for 18 representative strains; results are depicted
as an ICy5 heatmap. Drugs are ordered according to their similarity in side
effects to antibiotics from left to right (for antibiotic-related side effects
see Supplementary Table 5). Qualifiers indicate whether ICyss are higher
or lower than the indicated concentration; if no symbol, the box depicts
the exact ICys. If highest tested concentrations did not reduce growth

of any of the tested strains, the compound was classified as inactive (for
example, Topiramate). b, Dose of the tested compounds according to the
Defined Daily Dose and Drugs@FDA databases (see also Supplementary
Table 1). ¢, Based on a compound’s recommended dose and its median
1Cy5 for different bacterial strains, we estimated the number of doses need
to reach this ICys. This number was plotted against the drug’s P value

for enrichment of antibiotic-related side effects. For direct comparison
between the two groups, see Fig. 3c. Circles in magenta depict drug-strain
pairs for which growth was reduced, showing a clear correlation between
P values and the estimated number of doses (magenta line). To rule out the

© 2018 Macmillan Publishers Limited,

possibility that the tested concentration range is causing this correlation,
we also depict the estimated number of doses corresponding to the highest
tested concentration (grey line), which exhibits no clear dependency
between P value and number of doses. A vertical line across all panels
connects all parameters attributable to a particular drug. d, Recommended
single drug doses of human-targeted drugs with no anticommensal
activity in our screen plotted against enrichment in antibiotic-related side
effects (n =339). Candidate and control drugs selection for testing for
anticommensal activity at higher concentrations were selected on the basis
of similarity to antibiotic-related side effects (vertical black line depicts
prediction threshold) and aiming at drugs used at higher doses than
concentration in our screen (horizontal dashed line). Purple and dark grey
triangles indicate hits and non-hits from this validation effort, respectively.
e, Ratios between ICy5 and estimated colon concentrations are significantly
lower (P=0.017, two-sided Wilcoxon rank sum test) for candidate drugs
than for control drugs. For candidate drugs, 16 of 52 (31%) IC,ss were
below the estimated colon concentrations while for control drugs this
fraction was only 5 of 50 (10%). Box plots show: centre line, median; box
limits, upper and lower quartiles; whiskers, 1.5x IQR; points, outliers.
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Extended Data Figure 9 | Drug therapeutic classes with anticommensal
activity. a, Fraction of drugs with anticommensal activity by ATC
indication area (bars). All first-level indication areas and significantly
enriched lower levels are shown (see also Extended Data Fig. 10).
Significance (P value, one-sided Fischer’s exact test) is controlled for
multiple hypothesis testing (Benjamini-Hochberg) independently at each
ATC hierarchy level. b, Heat map of anticommensal activity and chemical
similarities of human-targeted drugs within the three significantly ATC
indication levels from a (indicated by circled numbers). Colours represent
the median of drug pairwise Spearman correlations within and between
subgroups depicted, calculated from the growth profiles of the 40 strains
in each drug (P values) or their chemical similarity (Tanimoto scores®?).
Examples of structurally similar (phenothiazines; NO5AA-AC) and diverse
(NO5AF-AX) antipsychotics that elicit similar responses in our screen

are marked. ¢, Antipsychotics exhibit higher similarity in gut microbes
they target than that expected on the basis of their structural similarity
(P=2 x 10~ estimated from random permutations; other classes
depicted show no significance difference). Box plots show: centre line,
median; box limits, upper and lower quartiles; whiskers, 1.5x IQR; points,
outliers. Notches correspond roughly to a 95% confidence interval for
comparing medians.
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Extended Data Figure 10 | Drugs with anticommensal activity for all
hierarchy levels of the ATC classification system. Fraction of drugs with
anticommensal activity for all indication areas of the ATC classification
scheme with a high fraction of active compounds. Shown are indication
areas that contain at least two active compounds and a fraction of at least
50% active compounds, their parent terms and all top-level indication
areas. Significance (P value, one-sided Fischer’s exact test) is indicated by
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the bar colour and corrected for multiple hypothesis testing (Benjamini-
Hochberg) independently at each hierarchy level of the ATC. Many smaller
classes, including PPIs (A02BC), non-selective calcium channel blockers
(CO8E), synthetic oestrogens (GO3CB), leukotriene receptor antagonists
(R03DC) and phenothiazine and other antihistamines (RO6AD and
RO6AX) are enriched, but owing to multiple testing and the small numbers
of drugs tested in each group, they do not reach a significant P value.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



'ﬁ!{fﬁ“fl i Hl

' .',%'* ":i,- *‘m 1
il t“u Mot

I

gl
: Eﬁ

"..“."w..

:11@.

$
gl

'ﬁt

ok G

e . :
'm 'll i If “EE mf -M -—-’

Extended Data Figure 11 | Comparing chemical similarity of drugs
and similarity of hit profiles across gut microbes. a, Heat map of
anticommensal activity and chemical similarities for all active human-
targeted drugs in our screen. Drugs are clustered according to chemical
similarity. Colours represent the median of drug pairwise Spearman
correlations within and between subgroups depicted, calculated from
the growth profiles of the 40 strains in each drug (P values) or their
chemical similarity (Tanimoto scores®?). Several prominent groups are
colour coded. Only drugs of some classes both share chemical similarity
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and have similar effects on the 40 strains—for example, phenothiazine
antipsychotics and antihistamines (NO5A and RO6AD), structurally
similar dibenzothiazepines and dibenzoxazepines for antipsychotics and
antidepressants (NO5AH and NO6AA), PPIs (A02BC), anti-oestrogens
(LO2BA), synthetic oestrogens (GO3CB) and anti-inflammatory fenamates
(MO1AG and M02AA06). b, A mild correlation exists between chemical
similarity (Tanimoto scores) and anticommensal activity similarity (drug
pairwise Spearman correlations): ;= 0.12 (P value of Spearman’s test
<2x10719),
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More complex, bulkier and heavier human-

targeted drugs are more effective against Gram-positive bacteria.
Fraction of inhibited Gram-positive (blue, n =22) or Gram-negative (red,
n=18) strains per drug plotted against different chemical properties of
the drugs. Chemical properties, such as complexity (based on atom types,
symmetry, computed using the Bertz/Hendrickson/Thlenfeldt formula),
molecular weight, TPSA (an estimate of the area, in A2), volume (in A?)
and XLogP (distribution coefficient that is a measure of differential

solubility in octanol and water) were obtained from PubChem®. For each
chemical property, we used a type I ANOVA to test for linear dependency
between the fraction of affected species and the chemical property (slope).
Additionally, we tested whether this dependency depended on the Gram
stain (slope difference). It is possible that there is no significant slope
without considering Gram stain, but that there is a significant difference
between the slopes for the two Gram stains. Lines show a linear fit to the
data, with 95% confidence intervals as shaded area.
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