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Abstract

Recently researchers proposed the term “Type-3-Diabetes’ for Alzheimer’s disease (AD) because
of the shared molecular and cellular features among Type-1-Diabetes, Type-2-Diabetes and insulin
resistance associated with memory deficits and cognitive decline in elderly individuals. Recent
clinical and basic studies on patients with diabetes and AD revealed previously unreported cellular
and pathological among diabetes, insulin resistance and AD. These studies are also strengthened
by various basic biological studies that decipher the effects of insulin in the pathology of AD
through cellular and molecular mechanisms. For instance, insulin is involved in the activation of
glycogen synthase kinase 3, which in turn causes phosphorylation of tau, which involved in the
formation of neurofibrillary tangles. Interestingly, insulin also plays a crucial role in the formation
amyloid plaques. In this review, we discussed significant shared mechanisms between AD and
diabetes and we also provided therapeutic avenues for diabetes and AD.
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1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by the
progressive decline of memory, cognitive functions, and changes in behavior and
personality. AD is the 6th leading cause of death in the United States and the 5th leading
cause of death for those aged 65 and older. Currently, 5.4 million Americans suffer from
AD, including an estimated 200,000 under the age of 65 and these numbers are expected to
increase up to 16 million by 2015. Nearly two-thirds of those with AD are women (3.3
million). AD-related dementia has had a huge economic impact on medical resources, with
the total estimated healthcare cost at about $818 billion in 2015, which is estimated to
increase to 2 trillion by 2015 [1, 2, 3].

Histopathological examination of AD postmortem brains revealed that the presence of
extracellular neuritic plaques, intracellular neurofibrillary tangles and neuronal loss. AD is
also associated with the loss of synapses, oxidative stress & mitochondrial structural and
functional abnormalities, inflammatory responses, changes in cholinergic neurotransmission,
hormonal changes and cell cycle abnormalities [3, 4, 5, 6, 7].

AD is multifactorial, with both genetic and environmental factors implicated in its
pathogenesis. A small proportion of AD cases show an autosomal dominant transmission of
the disease, and currently mutations in the genes encoding APP, presenilin 1 and Presenilin 2
have been characterized in early-onset familial AD cases. The best described risk factors for
AD are age and a positive family history of dementia, since more than one third of AD
patients have one or more affected first degree relatives. Other risk factors that may be
associated with the development of AD include severe head trauma, low levels of education,
female gender, previous depression, and vascular factors [3,4].
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The increase incidence in AD would be due to one of the emerging complication of Type 2
Diabetes mellitus (T2DM). In the United States alone there are more than 23 million T2DM
patients are present. Currently, 366 million people have diabetes mellitus world-wide, and
this number is expected to reach 552 million by 2030 (IDF, Diabetes atlas) [8]. T2DM is
characterized by high blood sugar (hyperglycaemia), insulin resistance, and relative lack of
insulin. This arises due to a reduced sensitivity of muscle, liver and fat cells to insulin (also
called insulin resistance). In general, immediately after the meal there is increase in
production of insulin by pancreas. The targeted organ for the insulin is adipose tissue,
skeletal muscle, liver, and fat and induces the uptake of glucose from the blood and
promotes glycogenesis by inhibiting glucose production. Another hallmark of diabetes is the
formation of human islet amyloid polypeptide (hIAPP, amylin) that leads to pancreatic -
cells dysfunction. The resulting metabolic disturbance leads to chronic hyperglycemia,
which is the immediate cause of many of the symptoms of diabetes such as retinopathy,
peripheral neuropathy and nephropathy [2, 9].

Substantial epidemiological evidence suggests T2DM are strongly associated with cognitive
impairment [10-14] due to failure in the action of glucose absorption in the neurons for
energy production. The association between T2DM and AD is complex both are interlinked
with insulin resistance, insulin growth factor (IGF) signalling, inflammatory response,
oxidative stress, glycogen synthase kinase 3p (GSK3p) signalling mechanism, amyloid beta
(AP) formation from amyloid precursor protein (APP), neurofibrillary tangle formation,
Acetylcholine esterase activity regulation. Because of shared mechanisms among Type-1-
Diabetes (T1DM), T2DM and AD; researchers termed “Type-3-Diabetes”. The purpose of
the review article is to discuss the shared cellular and molecular connections between
diabetes and AD for terming Type-3-Diabetes.

2. Impaired insulin and IGF actions in the brain

The insulin receptor (IR) is expressed both in neurons and glia of the brain and especially it
is seen with highest in the hippocampus, hypothalamus, cerebral cortex and olfactory bulb
[15, 16]. In the brain, insulin and IGF signalling mechanisms are important in establishing
synaptic plasticity for cognitive function. Once insulin binds with IR there is the activation
of various several tyrosine residues by auto phosphorylation (Fig. 1). These phospho-
tyrosine residues are important for insulin receptor substrate (IRS) 1 and 2 for initiating
several signalling cascades such as phosphatidylinositol 3-kinase (PI3K), GSK3p signalling,
mitochondrial regulation for energy production and wnt signalling cascades. PI3K is
associated with almost all of the metabolic actions of insulin [17, 18, 19]. PI3K converts
phosphatidylinositol 4,5 bisphosphate (PIP2) to phosphatidylinositol 3,4,5 trisphosphate
(PIP3). Then, PIP3 recruits protein kinase B (PKB, also known as Akt) to the plasma
membrane, where it is phosphorylated and activated by specific protein kinases [20]. PKB
has many important cellular targets including GSK3p Phosphorylation. This pathway
connects IR at the cell surface with enzymes of glycogen metabolism within the cell. Several
potent and selective inhibitors of GSK3 have been developed that mimic the action of insulin
on glycogen synthesis [21], and these are being evaluated for the treatment of insulin
resistance and T2DM.
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Insulin regulates synaptic plasticity by internalization of neurotransmitter receptors. For
example, insulin induces long term depression (LTD) by internalization of AMPA receptors,
[22-28] and also promotes GABA receptor-mediated synaptic transmission by the
recruitment of GABA receptors to postsynaptic membranes [29, 30]. Insulin also controls
the internalization of B-adrenergic receptors [31] and GluR2 (of AMPA receptor) [25] and
induces translation of dendritic synapse scaffolding protein PSD-95 [32]. These observations
suggest that insulin not only involved for the glucose metabolism for the neuronal survival
but also involved in the regulation of synaptic transmission neurotransmission for the
establishment if synaptic plasticity. Other studies also explored neuronal functions of insulin
such as neurite outgrowth [33] and enhancement of axonal regeneration in rat sensory
neurons [34]. Till date, researchers have shown different types of cognitive defects in T2DM
population but there are no studies on the role of insulin on spine density, synapse number
and size. It is therefore of great interest to investigate whether T2DM, a disease of reduced
insulin action, is associated with abnormal neuronal function. The increasing evidence that,
support the hypothesis that neuronal as well as peripheral insulin sensitivity is defective in
T2DM.

There are many studies that shown neurodegeneration and cognitive decline in insulin-
resistant patients who does not show hyperglycaemia (pre-diabetes) [35, 36], concluding that
hyperglycemia as important as loss of insulin action. In order to establish the molecular
connection between these two conditions, it is important to first establish whether neuronal
insulin resistance or neurotoxicity of hyperinsulinemias is responsible for the increased risk
of AD type dementia. Intriguingly, studies have shown that in age advances glycemic control
T2DM patients given the fact about insulin receptor (IR) presence in the cerebral cortex and
hippocampus not limiting to the skeletal muscle, liver and fat [37].

3. Oxidative Stress, mitochondrial dysfunction, advanced glycation end
products (AGE) in T2DM and AD

Oxidative reaction is a fundamental process that occurs in aerobic metabolism of every
single cell in mammalian species. These reactions are considered “double edged swords” as
they are essential for life but can be detrimental if unchecked or uncontrolled as already
evidenced in various diseases processes including T2DM, Huntington’s disease (HD) and
AD [38]. Oxidative stress (OS) occurs when there is an imbalance in reactive oxygen species
(ROS) and reactive nitrogen species (RNS) production and inflammatory responses to
counteract these free radicals [39]. Both AD and T2DM are prototypical examples of OS
induced disease processes and hence AD is rightly proposed as type 3 diabetes by Suzanne
et al. [40]. Free radicals are constantly produced in the cells as physiological byproducts of
metabolism. To maintain homeostasis, antioxidants are produced by the local activation of
enzymes, resulting in maintenance of cell integrity and prevention of damage and apoptosis.
Free radicals, depending on their oxidative power can be divided into those with a lower
reactivity, such as those produced in aerobic metabolism and those with longer reactivity as
seen in AD and T2DM. The lower reactive free radicals generally induce minor cell damage
and can be repaired relatively efficiently [41]. OS causes cell injury and death by apoptosis
by activating various enzymatic cascades at different cell components which include
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mitochondria, cytoplasm, and cell membranes. Lipid rich membranes in the human brain are
particularly vulnerable to oxidative stress. Other modes of cell injury can also be explained
by structural alterations in proteins such as amyloid beta and tau. These mechanisms will be
discussed briefly in the following sections (Figure 3).

3.1 Mitochondria and its dysfunction

Cell mitochondria, which are considered powerhouses of cells, are the key structures in the
production of ROS and RNS. The mitochondrial membrane is very permeable to these
products, which can enter the cell cytoplasm. However, most of these products are produced
as a result of metabolism and can easily be converted into water and/or oxygen. This can
occur in the mitochondria themselves or after entering into the cytoplasm in the presence of
dismutase enzymes, thereby preventing cell damage. Despite this efficient system, oxidative
imbalance can occur particularly when the mitochondria are dysfunctional and less efficient
in the production of ATP, which results in increased production of ROS as observed in AD
and T2DM. The production of ROS by mitochondria can be due to several enzymatic
reactions [41]. These enzymes convert molecular oxygen of aerobic respiration to
superoxide ion or hydrogen peroxide. The enzymes may be present on the outer or inner
membranes of the mitochondria or the mitochondrial matrix itself. It has also been suggested
that amyloid beta may play a direct role in the disruption of mitochondrial function (Figure
3). A recent study reported that mitochondrial localized amyloid beta induces increased
production of free radicals and causes mitochondrial dysfunction and neuronal damage in
the brains of AD mice [42].

3.2 Mechanism of OS secondary to amyloid and tau protein

Amyloid beta is formed due to proteolytic processing of APP. This is very similar h1APP,
which results in islet cell dysfunction leading to T2DM, analogous to AD [9]. Studies
indicate that amyloid beta may change the protective mechanisms that cells have against
mitochondrial oxidative damage. Uncoupling proteins (UCPs) in the mitochondrial inner
membrane have been shown to decrease free radical production [43]. This mechanism seems
to be ineffective in AD brains, and amyloid beta accumulation may contribute to changes in
the cell that lead to oxidative stress. Hyperphosphorylated tau protein causes neurofibrillary
tangles, which are one of the hallmarks of AD pathology [41]. The mechanism by which
these tau proteins and h1 APP lead to oxidative stress is not well understood, but some
investigators believe these are secondary processes. Su et al. reported that these proteins
trigger cellular pathways such as MAPK and AKT, leading to OS and cell structure damage
[44]. Many of these proteins have been studied and associated with tau phosphorylation
(Figure 2).

3.3 Hyperglycemia and oxidative stress

Hyperglycemia, either due to decreased insulin production by islet cells or due to impaired
insulin receptors, can cause accumulation of advanced glycation end (AGE) products
leading to ROS generation and cell damage. It has been shown that AGE products produce
superoxide and H,O, resulting in lipid peroxidation and cell damage in brains [40]. The link
between oxidative stress and hyperglycemia is that the increase in free radicals that occurs in
T2DM may be caused by varying levels of antioxidants such as superoxide dismutase
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(SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) [44]. This resulting imbalance
in pro-oxidants and antioxidants which causes oxidative stress is observed in diseases such
as AD and T2DM

3.4 Lipid peroxidation

The human brain is highly susceptible to OS due to the rich abundance of peroxidizable
polyunsaturated fatty acids and relative paucity of antioxidants and enzymes. T2DM
pathology induces changes in the lipid profile, which causes the cells to be more likely to
undergo lipid peroxidation [45]. Similar processes have been observed in the pathology of
AD. Lipid peroxidation is a key biomarker of oxidative stress as polyunsaturated fatty acids
with multiple bonds in cells are very likely to associate with free radicals [45]. Therefore,
lipid peroxidation is associated with increased levels of ROS and RNS in any disease
process which advances with oxidative stress, including AD and T2DM.

3.5 Advanced glycation end (AGE) products

AGEs are peptide/protein molecules formed as a result of the Maillard reaction [46]. These
molecules accumulate with aging and also found in both the types of diabetes. The
formation of these molecules in diabetes due to the hyper glycemia which is generally
accepted that many diabetic complications are potentiated or initiated by the accumulation
of specific forms of AGE and their interaction with receptors for AGE [47]. These AGEs
promote amyloid oligomer aggregation and thus involve the formation AD neurotoxicity
[48], in addition glycation of tau may enhance the formation of paired helical filaments [49].
Sato et al ., has shown the addition of AGEs to primary cortical neurons reduces cell
viability, confirming that these molecules are neurotoxic [47].

4 Cellular and molecular mechanisms of insulin in AD

The role of insulin in the brain has been discussed very little in comparison with muscle,
adipose tissue and liver. Recent studies have shown important functions of insulin in brain
such as metabolism of glucose (and transportation by GLUT4), regulating GSK3p signalling
in maintaining neuronal plasticity, neurotrophic and neuroendocrine functions [50]. The key
molecule for the neuroprotective function of IGF/insulin signaling is PKB (Akt) may be
mediated by direct phosphorylation of known regulators of apoptosis, such as the pro-
apoptotic mitochondrial protein Bad [51, 52] and the transcription factor FOXO [53, 54, 55],
as well as the pro-survival transcription factors CREB [56] and NF-kB [57, 58]. FOXO
controls the transcription of the pro-apoptotic Bcl2-family member BIM-1 [59], NF-kB
controls transcription of the pro-survival Bcl2-family members Bcl-XL [60], Al [61], and c-
IAP2 [62], and CREB controls the expression of Bcl2 [63] and BDNF [64]. Both IR and
insulin are present in the brain, and insulin is actively transported across the blood—brain
barrier and might also be produced locally in the brain [65]. IRs regulate neurotransmitter
release and receptor recruitment at synapse and thus responsible for synaptic/neuronal
plasticity [66—69]. IRs is abundant in cerebral cortex and hippocampus and thus responsible
for learning and memory processing which in turn responsible for cognitive functions [70-
73]. Intracerebroventricular (i.c.v.) streptozotocin (STZ) studies has shown cognitive
impairment in rats when IRs were disrupted [74] and in contrast, i.c.v. injection of insulin
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improves memory function in rats [75]. Based on these studies it concluded the role of
insulin on the cellular and molecular events that underlie in AD pathology. In diabetes,
insulin regulates the metabolism of amyloid beta and tau, in the formation AD pathology
through three signalling cascades such as phospholipase C, PI3K and MAP kinases.

Tau is a neuronal cytoskeletal protein and responsible for micro tubulin polymerization and
stabilization. GSK-3p is responsible for binding the tau protein to microtubules. This
process is regulated by protein kinases through phosphorylation. GSK-3p (Figs. 1, 3, 5)
activity is downregulated by either insulin or insulin growth factor 1(IGF-1) because it is
downstream event of the insulin-signaling pathway. Both IGF-1 and IGF-1 its receptors are
homologous and trigger similar intracellular signaling events [65, 76]. Hong et al. (1997)
demonstrated a decrease in tau phosphorylation by insulin and IGF-1 and promotes binding
of tau to microtubules by inhibition of GSK-3p through phosphoinositide 3-kinase pathway
in human neuronal cultures [77]. Normally Akt signalling involves to phosphorylate the
GSK-3p and inactivates glycogen synthase. Insulin resistance leads to dephosphorylation
and activation of GSK-3B [9]. Other than tau phosphorylation activity, insulin may also
regulate the metabolism of APP and balances AP anabolism and catabolism. Qiu et al. [78]
and Vekrellis et al. [79] have proposed that insulin influences insulin-degrading enzyme
(IDE) in the clearance of AP in the brains of AD patients. IDE is the major metalloprotease
involved in the degradation of extracellular AP along with insulin itself and other peptides
[78, 79]. Interestingly, insulin was shown to increase extracellular levels AB1-40 and AB1-
42 along with soluble APPa in primary cultures of rat cortical neurons and in mouse
neuroblastoma cells that overexpress wild-type APP [80, 81]. Insulin alters the extracellular
concentration of AP by inhibiting the extracellular degradation of AP by IDE, and by insulin
stimulating A secretion which significantly reduces the intracellular concentrations of
AP1-40 and Ap1-42 [80].

Overall, these results indicate that insulin could play an important role in regulating tau

protein, and AP and APP metabolism in neurons. Thus, dysfunction of insulin signaling
might be involved in the pathological events that lead to the development plaques in AD
brains.

5. Inflammation and AD

Insulin resistance in T2DM causes mitochondrial dysfunction, which in turn triggers
inflammation response [82, 83]. In these conditions, insulin resistance increases the levels of
cytokines such as IL-6, IL-1p and IL-18, tumor necrosis factor-alpha (TNF-a.), alpha-1-
antichymotrypsin and C-reactive protein [84-86]. Likewise, the same inflammatory
mechanism triggers in AD as well [87-89]. It has also been reported that T2DM increased
the neurodegeneration of the diabetic AD mouse model by promoting AP aggregation and
cerebrovascular inflammation by up-regulating the receptors for AGEs [90], on the other
hand there is elevated immunoreactivity to IL-6 was found in senile plaques and
cerebrospinal fluid in patients with AD [87]. AGEs is expressed in neuronal cells, microglia
astrocytes and in brain endothelial cells, and levels are increased in both AD and T2DM.
AGEs and AP together induce the expression of the pro-inflammatory cytokines IL-6 and
TNF-a. The AB-mediated activation of glial cells due to inflammation results in nerve cell

Biochim Biophys Acta. Author manuscript; available in PMC 2018 May 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuep Joyiny

Kandimalla et al.

Page 8

death by promoting in the formation of NFTs and the progression to AD (Figure 2).
Interestingly, it has been found that inflammation leads to elevation in the AGE, Tau and AB
levels. To strengthen the role of diabetic inflammation in AD, recent reports have shown that
incidence of AD is decreased in patients who consumed nonsteroidal anti-inflammatory
drugs for pain or antidiabetic drugs peroxisome proliferator-activated receptor-G (PPARG)
agonists [38, 39p1, 92]. AGE also causes the stimulation of TNF-a which in turn accelerates
B-secretase (BACE) expression further causing APP processing for the formation of AP in
astrocytes of diabetic models of AD [93, 94].

Recently, Lourenco et al. [95] described inflammation and cellular stress, are known to
activate stress-sensitive kinases, some of which target eukaryotic initiation factor 2 alpha
(elF2a) [kinases namely PKR, PERK and GCN2] [95]. This is a mechanism initially
conceived to avoid further cellular stress and to provide cells with response options to
restore homeostasis. Nevertheless, prolonged brain metabolic stress and elF2a kinase
activity may lead to persistently increased elF2a—P and exacerbated neuronal damage, in a
parallel to what has been described for peripheral cells in diabetes [96]. Increased elF2a—P
levels lead to upregulated activating transcription factor 4 expression, recently described as a
propagator of neurotoxic signals in AD [97], as well as to AP generation [98] and
translational attenuation [99] (Figure 2). All these factors may contribute to neurological
outcomes observed in AD. Furthermore, enhanced A oligomerization, in conjunction with
genetic and environmental factors (lifestyle, metabolic disease and/or cumulative infections),
might instigate a feed-forward cycle that contributes to disease progression.

AP oligomers (ABOs) or ADDLs trigger diabetes-related toxic mechanisms in AD brains.
ABOs accumulation in AD brains leads to removal of neuronal insulin receptor from cell
surface [100—-102] AP further increase microglial release of TNF-a in the brain, which in
turn activates neuronal TNF-a receptors and instigates cytosolic stress-sensitive kinases (e.g.
INK, PKR, IKK) [103-105]. An orchestrated action triggered by stress kinases promotes
both the inhibition of brain insulin signaling and elevated elF2a—P [103, 106]. While both
events act to promote insulin resistance and metabolic deregulation in diabetes, they are
likely to contribute to synapse loss and impaired long-term potentiation in AD, resulting in
memory impairment and behavioral outcomes (Figure 2).

All these findings suggest that T2DM insulin resistance generates oxidative stress which in
turn causes mitochondrial dysfunction and activation inflammatory response. In one
direction, it is responsible for the formation AP pathology and in another direction through
abnormal expression of dynamin related protein causes the formation of NFTs in brain.

6 Insulin and IGF link to acetyl choline (ACh) in AD

Acetylcholine is a neurotransmitter associated with neuronal signal transmission and
synaptic plasticity. Reduced levels of ACh are associated with the progression of AD, and a
study done by Rivera et al. (2005) demonstrated the relationship between lower ChAT
expression and IGF expression [107]. Using Real-time RT-PCR analysis, these authors
showed that with increasing clinical AD Braak stage, the mRNA associated with IGF-I, IGF-
II, and their receptors as well as tau protein regulated by IGF-I and Hu D neuronal protein
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are reduced. On the contrary, with increased Braak stage, progressively increased levels of
amyloid beta, glial fibrilary acidic protein (GFAP) and microglial transcripts were observed.
In a subsequent study, a year later, de 1a Monte et al. further supported the above findings
using intracerebral Streptozotocin (ic-STZ) treated rat models [108]. In this study, STZ
treated rats produced brain specific insulin depletion and resistance leading to progressive
neurodegeneration simulating AD. Hence these authors propose “Type 3 DM” for AD and
suggest possible early intervention and treatment using PPAR agonists (rosiglitazone and
piloglitazone).

Therefore, insulin resistance and IGF1/II deficiency may impair in the establishment of
synaptic/neuronal plasticity by altering neuronal structure and effect the production of
acetylcholine thus establishes a cellular link between T2DM and AD by impairing the
cognitive function.

7. Role of ADDLS/ABOs in AD pathogenesis through IR

Klein and colleagues demonstrated the existence of soluble and diffusible AP oligomers
(ABOs) and can able trigger neurotoxic signaling [109]. These ABOs also called Ap-derived
diffusible ligands (ADDLs), the terminology originally proposed by Klein [109]. Various
studies found are found at increased levels ADDLs / ABOs in the brains and cerebrospinal
fluid AD patients [110-115]. However these oligomers also target excitatory synapses [113],
promote toxic signaling and eventually cause failure in establishment of synaptic plasticity
[116-118]. These events events likely to underlie rapid memory decline in AD (Figure 5)
[102].

The ABOs when they bind with IR it causes synapse toxic effects such as abnormal
neurotransmitter release, receptor internalization and removal synapse across the neurons.
These cascades ultimately cause oxidative stress, mitochondrial fragmentation, increased
cytosolic ca2+ levels which effects PI3BK-MAPK-GSK3 signalling mechanisms, Inhibition
of axonal transport and mitochondria, hyper phosphorylation tau. Furthermore, ABOs plays
arole in the impairment of long term potentiation (LTP), to induce cognitive deficits in mice
[102, 143, 144].

8. Is T2DM and late-onset dementia a Type 3 Diabetes: based on available

evidences?

Recent concept suggests that AD represents a metabolic disease and the studies has shown
that deficits in utilization of glucose by the brain in the early course of disease [119-122]
and eventually leads to the cognitive dysfunction [123, 124]. Hoyer et al. has shown deficits
in cerebral glucose utilization worsening in with progression of cognitive impairment [125].
In addition to the deficits in glucose metabolism, human postmortem studies shown insulin
and IGF resistance and impairments in signal transduction [107, 126]. Insulin resistance in
brain is manifested by reduced levels of insulin and IGF receptors [107, 126, 127], while
insulin and IGF deficiencies are associated with altered expression of insulin and IGF
polypeptides in brain and cerebrospinal fluid [124, 128, 107, 126]. These findings support
the role of insulin/IGF signaling in the pathogenesis of AD [126]. Moreover, AD could be
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regarded as a brain disorder that has composite features of TIDM (insulin deficiency) and
Type2DM (insulin resistance). To consolidate this concept, de la Monte proposed that AD be
referred to as, “Type-3-Diabetes” (107, 126, 129]. As insulin stimulates cerebral glucose
uptake and metabolism [130], cognition and memory [131-135], but failure in insulin
signalling causes impairments in glucose metabolism and leads to the cerebral energy
balance in turn causes ROS production, DNA damage, and mitochondrial dysfunction, all
these cascades leads to pro-apoptosis, proinflammatory, and pro-ABPP-AP cascades [136,
130, 142]. Correspondingly, experimental suppression of brain insulin/receptor expression
causes cognitive impairment [137-141]. So in T2DM because of insulin resistance the above
stringent actions may takes place and this would be one of the reason researchers termed this
metabolic syndrome as “Type-3-Diabetes”.

9. Clinical and preclinical evidence for obesity/diabetes contributing to

type3 diabetes

Till date the role of obesity in cognitive impairment is not well understood. Some studies
have shown direction association, others indirect association, inverse association or U
shaped association of obesity in relation either with low or high BMI as increased risk factor
for AD (20, 21, 22). Recently, several studies on T2DM, obesity, IR, and hyperinsulinemia
have shown links with cognitive impairment and AD [146—-148]. A recent meta-analysis on
obesity (BMI> 30 kg/m?) has reported as obesity an increased risk factor for AD [149]; in
another study it has shown that cardiovascular disease is also risk factor for memory loss
[150]. Whitmer, 2007 has shown ‘mid-life obesity’ strong and independent association with
an increased risk of dementia and AD [151]. In this study author has shown that both obesity
and overweight, as measured by body mass index and skinfold thickness, in middle-age are
strongly associated with an increased risk of all cause dementia, AD & Vascular dementia
(VaD), independent of the development of diabetes and cardiovascular-related morbidities.
There is also value in assessing regional body shape distributions of adiposity, particular the
role of abdominal obesity. Mechanistic pathways such as adipocyte secreted proteins and
hormones, and inflammatory cytokines could explain the association between obesity and
increased risk of dementia [151].

LT}

Whereas “Midlife and late-life obesity and the risk of dementia: cardiovascular health study
has shown an increased risk of dementia was found for obese (BMI >30) vs normal-weight
(BMI 20-25) persons, adjusted for demographics (hazard ratio [HR], 1.39; 95% confidence
interval [CI], 1.03-1.87) and for cardiovascular risk factors (1.36; 0.94—1.95). The risk
estimates were reversed in assessments of late-life BMI. Underweight persons (BMI <20)
had an increased risk of dementia (1.62; 1.02-2.64), whereas being overweight (BMI >25—
30) was not associated (0.92; 0.72-1.18) and being obese reduced the risk of dementia (0.63;
0.44-0.91) compared with those with normal BMI [152].

Luchsinger et al. (2007) results are little contradiction with above studies results and shown
decreased risk of dementia with increasing BMI, but the subjects are 376 years of age, but a
U-shaped association in subjects <76 years of age [153]. These results suggested that
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changes in body size and composition with age make BMI a poor measure of obesity in
older subjects and also weight loss could be the preclinical condition of AD [151, 154, 157].

Till now the literature says the pathology of AD may develop in the advanced stage of AD
so the current risk factors such as obesity and IR in mid-life may be far more important than
they are in later life to treat mild cognitive loss. In the later life, it is also possible that insulin
sensitivity may mediate the effects of obesity on dementia, VaD and AD risk. Interestingly,
numerous studies shown increase in insulin concentrations in AD patients compared to
controls [146, 147, 155, 156, 157].

All these clinical and preclinical studies have shown obesity, insulin resistance/
hyperinsulinemia are would be the risk factors for AD, but whether adiposity and peripheral
insulin sensitivity mediate incidence of AD remains unknown. However Baker et al., (2011)
has shown little evidence on the role of peripheral insulin sensitivity on cognition [158]. In
detail, greater IR was associated with an AD-like pattern of reduced cerebral glucose
metabolic rate (CMRglu) in frontal, parietotemporal, and cingulate regions in adults with
PD/T2D. The relationship between CMRglu and homeostasis model assessment insulin
resistance (HOMA-IR) was independent of age, 2-hour OGTT glucose concentration, or
apolipoprotein E e4 allele carriage. During the memory encoding task, healthy adults
showed activation in right anterior and inferior prefrontal cortices, right inferior temporal
cortex, and medial and posterior cingulate regions. Adults with PD/T2D showed a
qualitatively different pattern during the memory encoding task, characterized by more
diffuse and extensive activation, and recalled fewer items on the delayed memory test [158].
All these changes suggest that IR may be a marker of AD risk that is associated with
reduced CMRglu and subtle cognitive impairments at the earliest stage of disease, even
before the onset of mild cognitive impairment [158]. In another study is has shown Higher
levels of HOMA-IR along with hyperinsulinemia have also been linked to an increased
burden of amyloid plaques over 10 years later in autopsy samples [159].

Overall, obesity/diabetes and type3 diabetes are directly and indirectly associated with AD.
Further research is still needed to better understand the precise molecular links among
obesity/diabetes, type3 diabetes and AD.

10. Effects of diabetes and obesity on the brain independent of type3

diabetes

Central obesity and diabetes are the key components of metabolic syndrome (MS) [160].
Several studies have shown the deleterious effects of MS on the brain both structurally and
functionally, leading to neurodegeneration and dementia [161].

The co-occurrence of metabolic risk factors for T2DM and cardiovascular disease (CVD)
which includes central obesity, hyperglycemia, dyslipidemia, and hypertension suggest the
existence of a “metabolic syndrome” [160]. Other names for MS include syndrome X, the
insulin resistance syndrome, and the obesity dyslipidemia syndrome. Genetic predisposition,
lack of exercise, and body fat distribution all affect the likelihood that a given obese subject
will become overtly diabetic. The mechanism by which obesity induces insulin resistance is
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poorly understood. Several studies have focused on the role of inflammation as a mediator
linking obesity to both the pathogenesis and vascular changes in several organs including the
brain [162]. The incidence of T2DM has been correlated with increased levels of markers of
inflammation or so called “metaflammation” including c-reactive protein (C-RP), IL-6,
plasminogen activator inhibitor 1 (PAI-1), TNF [3]. Evidence from various studies strongly
favor that morbid obesity/MS cause a low grade inflammation inducing tissue and vascular
damage [160].

Recent studies have demonstrated the hypothalamus in the brain plays a crucial role in
energy homeostasis by regulating two opposing neuronal axes, namely orexigenic axis and
anorexigenic axis [4] (Figure 6). When the balance in this homeostasis mechanism is
disturbed, it results in disturbances in appetite with changes in insulin secretion pattern,
leading to T2DM. In addition, insulin resistance in the brain plays a significant role as
described in section ‘2, 8, 9’ in this review article including promotion of amyloid beta
protein and tau protein.

As described elsewhere in this review, this met inflammation releases cytokines inducing
cellular damage by way of free radicals or oxidative stress and autophagic effect. In addition,
insulin resistance in the brain parenchyma causes microglial and astrocytic cellular
abnormalities with resultant accumulation of amyloid beta protein and tau protein
characteristic of AD.

Based on these it can be concluded that disturbances in hypothalamic function (a brain
component) causes MS which in turn induces cellular damage in the rest of the brain causing
AD. However, the cause and effect relationship is poorly understood and needs further
research.

11. Type3 diabetes and astrocytes

Impairment of mitochondrial function is another common link between diabetes, obesity and
AD. In the insulin resistance condition in T2DM, oxidative stress triggers mitochondrial
injury, finally leads to the not only the activation of inflammatory markers but also the
activation macrophages such as microglia in the brain. So in the T2DM patient’s brain
microglia plays crucial role for the inflammation. The precise mechanism of microglia in
this diabetic inflammation has not been fully investigated eventhough the microglial
activation pathway in the hypothalamus has been widely discussed in T2DM. However,
oxidative stress signals induce microglia based inflammation through chemokines and the
high mobility group protein in advanced stage of T2DM [2]. On the other hand silent
information regulator (SIRT) genes (sirtuins) plays crucial role in the inflammation of the
brain in obesity and T2DM via macrophages [2]. Nicotinamide riboside (NAD+) is an
activator of SIRT1 and increases neuronal mitochondrial biogenesis such as PGCla, NRF1,
NRF2 and TFAM and anti-inflammatory action in glial cells [2, 164-166]. However further
research is needed to understand the therapeutic interventions of nicotinamide riboside in the
brain.
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Insulin resistance in T2DM not only increases the levels of cytokines, chemokines but also
astrocytes. Earlier all the researchers were thinking astrocytes have nutritive role in addition
with structural support and a physical scaffold for neurons. Recent studies have shown that
astrocytes play a crucial role in glutamatergic neurotransmission and in synaptic
transmission by “tripartite” synapse mechanism [astrocytes themselves excites and they
communicate with neurons by sensing neurotransmitter release and in turn releases their
own signaling molecules (glia-transmitters), and intimately associated with synapses
physically]. In addition, astrocytes also associate with the cerebrovascular capillaries
through “endfeet” processes. These astrocyte ‘endfeet’ ensheath intraparenchymal blood
vessels in the brain and maintenance ionic and osmotic homeostasis and gliovascular
signalling [167-169]. Thus astrocytes are in close contact with microglia as well, and there
is a strong evidence for bidirectional signaling between the two cell types. Like microglia,
astrocytes also activated by various stimuli such as stress, and astrocytic activation are
increasingly appreciated event in AD and HD. Astrocytic involvement in the inflammation
of brain is characterized by increased cytokine production and the release of signaling
molecules. These events either directly or through microglial activation may affect the
neuronal function. NF-kB activated astrocyte pathway releases complement protein C3,
which can bind neuronal C3aR and induce neuron damage [170]. Another astrocytic
signaling molecule CD40 ligand binds to the microglial cell surface receptor which in turn
increases the production and release of TNFa.. Insulin resistance in diabetes may cause
changes such as the inflammatory response of both astrocytes and microglia may be seen in
peak during MCI, ultimately causes cortical tissue destruction in AD [171].

12. Cerebral metabolic changes in type3 diabetes

Rich intake of carbohydrates and unsaturated fatty acids (omega 6), low antioxidant intake,
lack of physical activity causes oxidative stress in the brain, ultimately leading to severe
cognitive decline in T2DM. Recent research on T2DM strongly suggesting a connection
between impaired glucose metabolism, insulin signaling with AD. In T2DM dysregulation
between glucose metabolism and insulin signaling causing additional risk factor for
developing AD. Clinically, AD patients have decreased cognitive function and lapses in
memory that decline progressively and ultimately affect performance of tasks involved in
everyday living. Physiological hall marks of AD such as insoluble extracellular plaques,
intracellular NFTs, loss of hippocampal neurons, decrease in acetylcholine production,
decrease in glucose consumption in cortex and hippocampus (associated with memory and
learning) can be measured by biopsy, positron emission tomography (PET) scan, or autopsy
[172—175]. All of these changes in the brain were resulting from long-term dysregulation of
insulin signaling and glucose metabolism. In AD patients there is significant decrease in the
rate of glucose metabolism especially in the regions where the memory processing and
learning takes place [177, 173, 175, 178]. Interestingly, the PET scans of people who are at
high risk for developing AD have shown decrease in the rate of glucose metabolism before
the appearance of AD symptoms and can be detected before 2—-3 decades [173]. These
declines in the rate of glucose metabolism are associated with normal aging, but in people
who are at risk for AD, they begin at a younger age and decline more aggressively.
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In the CNS, Apo-E is mainly produced by astrocytes, and transports cholesterol to neurons
via Apo-E receptors. Cholesterol synthesis is upregulated and absorption downregulated in
insulin resistance and in T2DM. ApoE isoform ApoEe4 allele has shown the risk factor AD.
The presence of this allele is associated with increased risk of both early-onset AD and Late
onset AD. Localization studies demonstrate that Apo-E is deposited in the extracellular
senile plaques AD patients. AP deposition in the form of senile plaques is more abundant in
ApoEe4 carriers when compared with ApoEe4 non carriers. Whereas ApoEe3 expression
and microglial phagocytosis, reduce soluble AP levels, and improve cognition. The
formation of NFTs in the brain are regulated by glycogen synthase kinase 3p (GSK-3p) by
hyper phosphorylation tau but insulin inhibits this hyperphosphorylation of tau action. In
T2DM/insulin resistance hyper phosphorylation of tau is not inhibited but an interesting
feature ties hyper phosphorylated tau back to ApoEe4. Of the three isoforms of ApoE, e4 is
unique in its inability to bind tau. The E3 isoform has been proven to bind to tau (with the
same suspected for E2), thus preventing or minimizing its phosphorylation [4, 179, 180].

Increased production of AP inside the cell indicates that reduced extracellular clearance and
causes AP to accumulate as senile plaques. AP is cleared primarily by insulin degrading
enzyme (IDE). The affinity of IDE for insulin is so high, however, that the presence of even
small amounts of insulin completely inhibits the degradation of AP [181]. Insulin acts as a
competitive inhibitor for IDE and allows AP to accumulate. When age advances, the
production of IDE declines with age, so there is an increasing amount of substrate combined
with lower enzyme activity. Just as insulin can be seen as a competitive inhibitor of IDE for
degradation of AP, AP can be viewed as a competitive inhibitor of insulin for its receptor.
This has been proven in human cells in vitro—AP reduces the binding of insulin to its
receptor in a dose-dependent manner [182].

It had long been believed that glucose uptake in the brain was entirely independent of insulin
with GLUT1 and GLUT3 glucose transporters and are non-insulin-sensitive. However, it is
now recognized that GLUT4 glucose transporter is insulin receptors and insulin-sensitive
glucose transporter which is present at the blood brain barrier (BBB) and in some types of
brain cells. Interestingly these transporters are rich in the regions where memory and
learning processing takes place at high rate [183, 184]. Entry of insulin and glucose into the
brain happens by saturable mechanism i.e when increased peripheral insulin levels no longer
elevate levels in the CNS. In addition, GLUT]1 transporters at the BBB are saturated by
normal physiological concentrations of glucose [185]. Ultimately, increasing glucose uptake
by the brain/CNS would require an increase regulation of GLUT4 or insulin receptors. But
in AD when GLUTH4 or insulin receptors have been compromised, it could cause dynamics
to a functional hypoglycemia in the brain and thus decreases the rate of brain glucose
metabolism. On the other hand, if there is deficiency in insulin this could causes increase in
glycation (AGE) what can be seen in AD brains even though glucose enters in to the brain
interstitial fluid. In one clinical study it has shown, patients with advanced AD has higher
plasma insulin levels and lower CSF insulin levels when compared with healthy controls
[184]. This indicating that, entered glucose in to the brain could not able to metabolize
(insulin resistant) and eventually leads to the formation of AGEs and thus affects key
enzymes in cognitive function. Intriguingly, in most biological mechanisms, acute
administration of insulin improves performance on tests of memory and cognition, but
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chronically elevated insulin levels have the opposite effect [147, 185—-187]. This is due to the
pathology of T2DM, in which normal, acute injections of insulin help regulate glucose
uptake, but chronically elevated levels lead to insulin resistance, hyperglycemia, and
complimented with inflammation and vascular damage. Chronically elevated insulin levels
in the periphery, it seems, depress insulin sensitivity at the BBB and therefore increases
glucose utilization in the brain. Usually in the absence of an alternative fuel source, brain
cells starve and neurons will show decrease in their metabolic activity for other
physiological functions. Metabolic fuel is inside the body, but the brain cells are not able to
able to derive energy from it. The parallels to T2DM are striking, making the term “type 3
diabetes”. However, further research is needed to better understand cerebral metabolic
changes in type3 diabetes in relation to the progression of AD.

13. Conclusion and future directions

Earlier T2DM and AD were earlier considered as two independent metabolic disorders. But
the recent literature on clincal and basic research has shown that there are common
pathophysiological changes and signaling pathways such as PI3K-GSK3p signaling,
neuronal stress signalling and inflammatory pathways which associates a relation between
the two pathologies and termed as T3D diabetes. The current notion in AD is that
abnormally activated neuronal stress signaling pathways have functional consequences in
pathological conditions that affect the brain raises the possibility that targeting these
mechanisms through anti-diabetic agents and/or small molecule inhibitors may constitute an
approach to treat defective brain insulin signaling, cognitive impairment and
neurodegeneration. Finally, understanding how disease modifiable risks factors such as
aging, ApoE abnormalities, defective insulin signaling, and metabolism are critical in the
development of therapeutic interventions. Several studies have reported diet and exercise in
slowing the progression of AD. Exciting new therapies, including immunotherapy and deep
brain stimulation (DBS), are in the horizon. The recent discovery of an immune system
associated gene coding for the immune signal IL-1 receptor accessory protein (IL-1 RAP)
provides another target in the treatment of AD. Abnormalities in this gene were reportedly
associated with lower levels of microglial activity, faster cognitive decline, and progression
to AD. In the future, targeting the IL-1 RAP pathway may be a viable approach to clearing
amyloid from the brain and slowing the progression of AD. Further research is needed to
better assess the impact of such exogenous mediators of neurodegeneration, and the
spectrum of agents that can produce similar abnormalities leading to AD-type
neurodegeneration.

Although, significant research has been done till date in understanding the cellular and
molecular pathogenesis of diabetes and AD, still several questions remain unanswered on
the shared mechanisms of AD and diabetes termed ‘Type-3-Diabetes’. How upstream
components (IR and IRS) of brain insulin/IGF signalling successfully involved in AD
pathogenesis. Further, investigation of how insulin acts on long term potentiation and long-
term depression across synaptic contacts is required in order to understand how stimulators
of insulin signaling act to promote neuroprotection in AD brains. The role of ApoEe4 allele
on the cerebral insulin signalling in the pathogenesis of AD is not studied. Current research
evidence is largely based on a few rodent models and on observational clinical studies.
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signalling along with meta-analysis studies on insulin resistance and neurodegeneration may

provide important clues in the pathogenesis of AD.
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Figure 1.

Schematic representation of T2DM/insulin resistance in Alzheimer’s disease through a)

——— Alzheimer’s Disease

mitochondrial dysfunction, which in turn causes synaptic damage, and neuronal death, b)
glycosylated hemoglobin in impaired cognitive function by failure in the transport of
glucose for neurons, ¢) oxidative stress-induced amyloid beta and phosphorylated tau
formations through advanced glycation end products , d) inflammation by mitochondrial
dysfunction and toxicities of amyloid beta and glycation end products, e) activation of
voltage-dependent anion channel by amyloid beta-induction in neuronal loss.
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Figure 2.
Insulin resistance in T2DM causes mitochondrial dysfunction, which in turn triggers

inflammation response through either APP/hIAPP catabolism. Amyloid beta oligomers
activate microglia in the production of cytokines. An orchestrated action triggered by stress
kinases promotes both the inhibition of brain insulin signaling and elevated e[F2a—P. While
both events act to promote insulin resistance and metabolic deregulation in diabetes, they are
likely to contribute to synapse loss and impaired long-term potentiation.
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Figure 3.

Insulin resistance decreases glucose metabolism and plays a pivotal role in mitochondrial
damage, DNA damage and ROS formation. This triplet action is involved in the formation of
plaques.
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Figure 4.
Brief Illustration of insulin signaling pathway in a) healthy brain and b) AD brain. (Figure

concept adapted from “Trends Neurosci. 2016 Jun 17. pii: S0166-2236(16)30037-6. )
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Figure 5.
Role of amyloid beta oligomers on toxic effects of synapses, including synaptic

degeneration, abnormal neurotransmitter release and cytoskeletal damage. Synaptotoxic
effects cause defective axonal transport, mitochondrial fragmentation, degradation of kinases
activity, oxidative stress, impaired LTP, increase in intracellular calcium levels.
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Figure 6.
Ilustration of hypothalamus in the brain plays a crucial role in energy homeostasis by

regulating two opposing neuronal axes, namely orexigenic axis and anorexigenic axis
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