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The number of the elderly across the globe will approximate 2.1 billion by 2050. Juxtaposed against this burgeoning segment of the
population is evidence that nonpathological aging is associated with an increased risk for cognitive decline in a variety of domains,
changes that can cause mild disability even before the onset of dementia. Given that pharmacological treatments that mitigate
dementia are still outstanding, alternative therapeutic options are being investigated increasingly. The results from translational
studies have shown that modifiable lifestyle factors—including physical activity, cognitive engagement, and diet—are a key
strategy for maintaining brain health during aging. Indeed, a multiplicity of studies has demonstrated relationships between
lifestyle factors, brain structure and function, and cognitive function in aging adults. For example, physical activity and diet
modulate common neuroplasticity substrates (neurotrophic signaling, neurogenesis, inflammation, stress response, and
antioxidant defense) in the brain whereas cognitive engagement enhances brain and cognitive reserve. The aims of this review
are to evaluate the relationship between modifiable lifestyle factors, neuroplasticity, and optimal brain health during aging; to
identify putative mechanisms that contribute positive brain aging; and to highlight future directions for scientists and clinicians.
Undoubtedly, the translation of cutting-edge knowledge derived from the field of cognitive neuroscience will advance our
understanding and enhance clinical treatment interventions as we endeavor to promote brain health during aging.

1. Introduction

The number of elderly across the globe will approximate
2.1 billion by the year 2050 [1, 2]. Accompanying this
increase will be the personal, social, and economic burden
of care for individuals with age-related disorders. These
challenges are even more worrisome given that nonpatho-
logical aging is associated with decrements in key regions
of the brain vital for cognitive function and, thereby,
decline in several cognitive domains (including memory,
attention, speed of processing, and executive function)
[3, 4], changes that may result in mild disability even
prior to the onset of dementia. Notwithstanding, pharma-
cological treatments that mitigate dementia are still out-
standing, creating an imperative to diversify efforts to find
efficacious alternatives. Modifiable lifestyle factors are
among the candidate therapeutics particularly well-poised

to mitigate age-related disorders [5–11]. Evidence strongly
suggests that the maintenance of adequate levels of physical
activity (PA), engagement in cognitive stimulation, and opti-
mization of nutritional intake can increase neural plasticity
and resilience of the brain [12–15].

The ability of neurons in the brain to change and reorga-
nize continuously to meet the dynamic demands of the
internal and external environment is termed neuronal
plasticity. This process is dependent on membrane depolari-
zation of the neuron, stimulus-induced synaptic activity, and
subsequent changes in dendritic morphology, central hall-
marks of learning and memory. Importantly, long-term PA
moderates processes that are cornerstone for neuroplasticity
[16]. Van Praag et al. demonstrated that mice that were
given voluntary access to running wheels exhibited selective
enhancement of long-term potentiation (LTP) in the dentate
gyrus [17], a phenomenon linked with concomitant increases
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in brain-derived neurotrophic factor (BDNF) [18]. Eadie
et al. demonstrated that long-term PA significantly increased
dendritic length, dendritic complexity, and spine density in
the dentate gyrus of mice [19]. Stranahan et al. demonstrated
that long-term voluntary wheel running in rats induced
changes in spine density along with changes in arborization
and spine morphology [20]. Altogether, these findings sug-
gest that PA induces neuroplastic changes in brain structure
and function and, therefore, may be an effective component
of therapeutic regimes that aim to improve cognition.
Interestingly, other work suggests that mental engagement
and dietary factors also effectuate changes in plasticity by
altering neurotrophic signaling, neurogenesis, inflammation,
stress response, and antioxidant defense mechanisms, which
are outcomes similar to those implicated in the cognitive
response to PA [16].

Knowledge of the dynamic relationship between brain
plasticity and lifestyle factors creates an imperative to better
understand and harness these links to promote healthy aging
and forestall the onset of disease. Several national bodies have
affirmed this notion, including the National Institutes of
Health [21], the Centers for Disease Control, the Alzheimer’s
Association, and the American Association of Retired Per-
sons (AARP). Accordingly, the purpose of this review is to
(1) explicate key lifestyle factors (in particular PA, cognitive
engagement, and diet) that can be harnessed to enhance
neuroplasticity and optimal brain health; (2) explore the
putative mechanisms by which these factors affect age-
related biology; and (3) highlight implications for clinicians
and researchers.

2. Physical Activity

Numerous studies have reported a robust relationship
between higher levels of PA and improved learning and
memory [22, 23]. Epidemiological studies show that regular
PA reduces the risk of cognitive decline in aging adults
[15, 24–26], with some evidence intimating that midlife
PA may be especially beneficial. A population-based study
of PA at midlife, followed up 26 years later with an assess-
ment of late-life cognitive function, found that groups who
participated in PA during midlife exhibited a faster speed
of processing along with better memory and executive
function. Additionally, those in the moderate PA group
were significantly less likely to have dementia in late life
[15]. A meta-analysis of 29 randomized controlled trials
(n = 2049) showed that aerobic exercisers exhibited improve-
ments in attention, processing speed, memory, and executive
function [27]. Another meta-analysis of 15 prospective
studies (n = 33 816 persons without dementia) reported that
PA consistently resulted in a protective effect at all levels
of activity [28]. Findings from a study of school children
clearly demonstrates a positive correlation between PA
and academic performance [29]. Indeed, higher cardiore-
spiratory fitness levels have been associated with better
performance on a relational memory task and greater hippo-
campal volumes in children [30], findings that have been
recapitulated in adolescents [31, 32]. Together, these results

suggest that the pervasive central benefits of PA on cognition
span age groups.

Clinical studies demonstrate a positive relationship
between PA and brain structure and function. A neuroana-
tomical study of persons aged 55 to 79 years demonstrated
that age-related declines in cortical tissue density in the
frontal, temporal, and parietal cortices were significantly
reduced as a function of cardiovascular fitness [33], an
interesting fact given that these areas underlie executive
function and yet exhibit the greatest rate of age-related
decline in humans [34]. Another study of elderly persons
showed a direct correlation between increased levels of
PA and improved cognition, with increased hippocampal
volume seen after chronic exercise [35], supporting the idea
that PA may prevent age-related anatomical and physio-
logical deterioration in the brain [36, 37].

Bolstering the notion of PA’s positive central effects are
preclinical and clinical studies demonstrating neuropro-
tective and neuroplastic effects across a variety of neuro-
degenerative and neuropsychiatric diseases [36, 38–44]. A
recent systematic analysis of 38 animal and human studies
reported that PA attenuates Alzheimer-related neuropathol-
ogy and positively affects hippocampal-mediated cognitive
function, particularly when deployed early in the disease
process [36]. Findings from another systematic review and
meta-analysis demonstrate that PA is beneficial for people
with Parkinson’s disorder, specifically in areas of physical
functioning, health-related quality of life, strength, balance,
and gait speed [45]. Moreover, a recent review of clinical
trials demonstrated that acute and chronic exercise generally
increased levels of trophic factors in plasma and serum in
persons with neurodegenerative conditions, including those
with multiple sclerosis [46]. Also, PA has shown clear and
consistent promise in promoting neuroplasticity in persons
with mood disorders and, thereby, improving behavioral
and neurobiological outcomes [38, 47], effects that extend
to persons with posttraumatic stress disorder [48]. In persons
with schizophrenia, evidence suggests that PA improves
global cognition, working memory, social cognition, and
attention [49]. A randomized controlled trial in persons with
schizophrenia demonstrated that PA induced a 12% increase
in hippocampal volume relative to nonexercisers [50]. While
the dynamic cellular and molecular cascades that underlie
the association between PA, cognition, and brain structure
and function have yet to be elucidated fully, several modifi-
able mechanisms that alter neural plasticity have garnered
increased attention recently, especially neurotrophic signal-
ing, neurogenesis, inflammation, stress response, and antiox-
idant defense mechanisms [16]. Admittedly, an exhaustive
review of all factors related to cognitive aging is beyond the
scope of this article. Therefore, the reader is referred to the
following excellent reviews for other factors that have been
implicated in cognitive aging [51–59].

2.1. Neurotrophic Signaling. Neurotrophins are essential
modulators of PA-induced neural plasticity. As one of the
most widely distributed neurotrophins in the brain, BDNF
plays a critical role in the maintenance, growth, and synaptic
plasticity of neurons that underlie emotion and cognition
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[18, 60–62] and also modifies neuronal excitability [62, 63].
BDNF is centrally and peripherally upregulated [64–67]
following acute and long-term PA [68, 69], changes that
endure for days [70] and are prominent in the hippocampus
[22]. While higher levels of training intensity are requisite for
maximal effects [66, 71], both resistance [72] and aerobic
[71] exercise can effectuate the increases in BDNF levels once
sufficient intensity of PA is achieved.

Extending these studies to humans, it has been shown
that moderate levels of PA mitigate cognitive decline in aging
persons through putative mechanisms that involve BDNF.
Laurin and colleagues demonstrated that PA levels were
inversely correlated with the risk for cognitive impairment
and all-cause dementia [73]. Lautenschlager and colleagues
reported that persons with subjective memory impairments
who were randomized to 6 months of aerobic exercise
exhibited lower clinical dementia rating scores, increased
delayed recall, and better outcomes on the cognitive subscale
scores of the Alzheimer’s Disease Assessment Scale relative to
controls during an 18-month follow-up period [74]. Coelho
and colleagues investigated the effects of acute aerobic
exercise on BDNF levels in older persons with AD and found
a significant correlation between BDNF levels and levels of
PA [75], suggesting that long-term PA may persistently
elevate BDNF levels and modulate cognitive function in older
adults. The latter notion is important given that BDNF
gene expression levels naturally decrease in age-related dis-
orders such as AD [76]. Decrements in BDNF are prob-
lematic because retrograde transport of BDNF from the
hippocampus to forebrain cholinergic neurons protects
against neuronal damage and degeneration [66]. Moreover,
the maintenance of basal BDNF levels is requisite for hippo-
campal neurogenesis [77]. Interestingly, while both PA and
cognitive training improve cognitive function, only PA
increases plasma BDNF levels in rodents, suggesting that an
adequate level of PA is essential for BDNF-mediated plas-
ticity [78]. Furthering this notion is work demonstrating
that the blockade of BDNF on TrkB receptors reduced
the positive effects of PA on synaptic plasticity [79].

Altogether, these results suggest that PA effectuates
central neuroplastic adaptations via the optimization of
BDNF levels. The ability of PA to enhance BDNF release
and function in the synapse, to promote dendritic spine
integrity, and to activate other cellular pathways that contrib-
ute to plasticity [80–83] is a cornerstone for homeostatic
processes that maintain, repair, and reorganize circuits
damaged during aging and disease.

2.2. Neurogenesis. The addition of new neurons to existing
circuits through adult neurogenesis represents a unique
form of synaptic plasticity. The majority of the neurons
in the brain are formed in the womb. However, the brain
maintains the ability to generate new neurons throughout
life in certain regions (e.g., dentate gyrus and olfactory
bulb) [84, 85]. Importantly, preclinical work suggests that
PA increases adult neurogenesis, synaptic plasticity, and
learning in the dentate gyrus of the hippocampus. Van Praag
and colleagues demonstrated that voluntary wheel running
simultaneously increased bromodeoxyuridine-positive cell

numbers (precursor cell proliferation) and improved water
maze performance (learning) [17]. Schmidt-Hieber and
colleagues showed that newly born neurons in the hippocam-
pus exhibit a lower excitability threshold and enhanced
capabilities for synaptic plasticity [86], altering the rate by
which new dentate granule cells are functionally integrated
into hippocampal circuitry [87]. Eadie et al. demonstrated
that long-term PA significantly increased total length and
complexity of dendrites. Fascinatingly, they also demon-
strated that long-term PA induced a more immature state
of dentate granule cells [19], suggesting that PA reopens
windows of plasticity. Stranahan et al. demonstrated that
long-term voluntary wheel running in rats induced changes
in spine density along with changes in arborization and
spine morphology [20]. Others demonstrated that PA and
cognitive stimulation exert differential effects on neurogen-
esis in rodents [88–91]. Whereas PA increases proliferation
of neural precursor cells, cognitive stimulation promotes
survival of the newly born cells. Thus, the absence of
complex stimulation can block differentiation into mature
neurons [92].

Translating the preclinical work to humans, clinical
investigations using functional magnetic imaging have
demonstrated that long-term aerobic exercise (3 months)
increased blood volume in the dentate gyrus of the hippo-
campus and improved performance on the modified Rey
Auditory Verbal Learning Test [93]. A randomized con-
trolled study of healthy community-dwelling older adults
demonstrated that those who participated in moderate
aerobic exercise 3 times per week for 12 months showed
a significant increase in size in the right and left hippocampus
with concomitant improvements in spatial memory, a rever-
sal that mitigated 1-2 years of age-related loss in hippocam-
pal volume [94]. Encouragingly, increases in hippocampal
size have been correlated with increases in spatial memory
performance in both healthy adults [94] and persons with
mild cognitive impairment [95]. The fact that PA upregulates
neuronal proliferation and increases plasticity offers much
hope for exploiting newly born neurons to maintain hippo-
campal volume in healthy and high-risk populations during
aging [36, 96].

2.3. Inflammation. Long-term PA upregulates anti-
inflammatory processes, an important finding given that
chronic inflammation is mechanistically linked to cognitive
impairment, mood disorders, cardiovascular diseases, and
neurodegenerative disorders [22, 97]. Several studies have
demonstrated that persons who regularly participate in PA
have fewer viral and bacterial infections and a reduced
incidence of systemic low-grade inflammation [98–102].
For instance, Kohut and colleagues studied the effects of PA
on immune function and found that elderly individuals
who participated in aerobic exercise (45 minutes per day,
3 days/week for 10 months) exhibited a reduction in plasma
interleukin 6 (IL-6), interleukin 8 (IL-8), C-reactive protein
(CRP), and tumor necrosis factor (TNF) levels [101]. A
randomized control trial in sedentary elderly adults demon-
strated that those who participated in a supervised exercise
program (3 days/week for 6 months) showed improvement
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in their inflammatory profile [103]. Other studies suggest
that the beneficial effects of long-term exercise on cognition
may stem in part from anti-inflammatory factors, specifically
IL-6 [104–107], IL-8 [108–110], CRP [111–113], and TNF
[114–116]. These findings are in line with several recent
reviews that found that long-term moderate intensity PA
can exert anti-inflammatory and neuroprotective effects
[117–122]. Moreover, a recent review explicated mechanisms
that contribute to neuroinflammation-induced impairments
in neurogenesis in several conditions (aging, Alzheimer’s,
traumatic brain injury, and stroke), underscoring the impor-
tance of therapeutics such as PA that target the interplay
between multiple neuroplasticity substrates, not isolated
factors per se [123]. Together, these studies offer hope that
PA can be used to mitigate age-related changes in immune
senescence and preserve cognitive function with aging.

2.4. Stress Response. The hypothalamic-pituitary-adrenal axis
(HPA) is a neuroendocrine circuit that coordinates emo-
tional, cognitive, autonomic, and neuroendocrine responses
to acute and chronic stress. Acute deactivation and activation
of the HPA effectuates various changes in brain activation
patterns: significant deactivation occurs in the hippocampus,
hypothalamus, medio-orbitofrontal cortex, and anterior
cingulate cortex following stress [124], whereas significant
activation occurs in the amygdala [125, 126]. These activa-
tion patterns likely reflect adaptations to help a person
recognize and counteract similar stressors in the future
[127]. Conversely, persistent activation of the HPA as a
result of chronic stress can mediate long-term changes in
the stress response including damage to keys areas of the
brain (e.g., prefrontal cortex, paraventricular neurons, and
hippocampus) [127]. It has been shown that persistently
elevated levels of glucocorticoids are neurotoxic [128, 129].
Specifically, HPA dysregulation induces neuronal atrophy
secondary to changes in neurochemistry, resilience, and
plasticity in the hippocampus [130].

Activation of the HPA is induced by corticotropin-
releasing hormone (CRH) in the paraventricular nucleus in
response to a stressor challenge, which induces adrenocorti-
cotropic hormone (ACTH) from the pituitary and, in turn,
effectuates the release of glucocorticoids (cortisol in humans
and corticosterone in rodents) from the adrenal glands [131].
Glucocorticoids thenmodulate the stress response along with
metabolic, immunologic, and genetic functioning [132–134].
Notably, the release of cortisol following an HPA stress
response occurs within the context of ongoing basal cortisol
release. That is, cortisol is naturally secreted over a 24-hour
period daily in the absence of stressors according to a diurnal
cycle [135]. Notwithstanding, cortisol levels naturally vary
in response to endogenous and exogenous factors (e.g.,
sleep wake cycle, exposure to light and dark, hormones,
food consumption, and psychosocial variables) [136].
Thus, HPA function reflects an individual’s basal diurnal
secretion along with their response to ongoing endogenous
and exogenous stress.

Negative feedback mechanisms tightly regulate the
HPA response via mechanisms that involve high-affinity
binding to mineralocorticoid receptors and low affinity

glucocorticoid receptors [137]. Glucocorticoids “turn off”
their own secretion by downregulating the release of hor-
mones (CRH and ACTH), a response that then decreases
mineralocorticoid and glucocorticoid receptor signaling
and, in turn, downregulates the activity of the HPA to
prestress baselines. Appropriate modulation of the HPA
response appears paramount to brain health given several
lines of evidence implicating stress-related hyperactivity
and dysregulation of the HPA with age-related, neuropsychi-
atric, and neurodegenerative disorders [128, 133, 138–142].

Unfortunately, some evidence suggests that HPA changes
may occur during the aging process. It has been shown that
cortisol levels increase with age [143, 144] and diurnal slopes
flatten [144–147]. Aging also engenders decreased glucocor-
ticoid sensitivity and impaired negative feedback, changes
that could prolong the stress response [148]. Finally, the
HPA axis may become dysregulated in aging persons
following exposure to chronic stress (e.g., health impair-
ments, loss of function, and bereavement) [149]. With time,
these changes may effectuate systemic changes that are dele-
terious to physical and cognitive health. Indeed, increased
basal cortisol levels are associated with hippocampal-related
memory impairments [150] and frailty [151], whereas lower
levels of basal cortisol are associated with longevity [152].

Fortunately, a bevy of research suggests that long-
term, voluntary PA mitigates an overactive stress response
[153, 154]. Supporting this notion is evidence that exercise
reduces the response to stressor challenge [155], an effect that
may stem from exercise-induced fluctuations of glucocorti-
coid and mineralocorticoid receptor expression in the brain
[155, 156]. The ability of PA to attenuate rises in cortisol
levels may be especially important for preventing hippocam-
pal atrophy [157–159] and for reversing cognitive deficits in
the aging population [94, 160] given that hippocampal
neurons exposed to persistently elevated glucocorticoids
retract their dendrites and exhibit fewer dendritic spines
[161]. Also, preclinical evidence suggests that the degree of
dendritic branching in hippocampal neurons and overall
number of dendritic spines increase with voluntary wheel
running [19, 20, 162], potentially mitigating the effects of
stress exposure. Together, this evidence suggests that PA
may bolster physiological resilience by optimizing the stress
response during aging.

2.5. Antioxidant Protection. Humans have a highly evolved
antioxidant system designed to protect neurons from oxida-
tive stress. By definition, oxidative stress is an imbalance
between antioxidants and reactive oxygen species (ROS)
(e.g., superoxide, hydrogen peroxide, and hydroxyl radical)
[163]. Oxidative stress is widely deleterious in the central
nervous system given that reactive oxygen species damage
proteins, DNA, and lipids [164] and the fact that the brain
has high metabolic demands and low antioxidant capacity
[165, 166]. Notwithstanding, aerobic exercise decreases
overall levels of ROS and increases adaptations to ROS-
induced lipid peroxidation [167, 168]. These mechanisms
stem in part from the ability of PA to increase antioxidant
gene expression (e.g., superoxide dismutases and glutathione
peroxidase) and, thereby, antioxidant enzymatic activities in
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the brain [167, 169]. Together, these studies suggest that
long-term exercise optimizes redox homeostasis. Such is
important for aging persons given that the kinase proteins
that induce structural and functional changes in synapses
require specific redox environments and that synaptic
activity can be modulated via ROS levels.

3. Cognitive Engagement as a Component of
Healthy Lifestyle

Convergent evidence suggests that engagement in mental
activity also conveys neuroprotective and neuroplastic bene-
fits during aging. Higher levels of education, a proxy for cog-
nitive reserve, are associated with a reduced risk for cognitive
impairment [170, 171], even in those with high-risk genetic
backgrounds (e.g., apolipoprotein E4 carriers) [172, 173],
possibly by increasing the threshold at which impairments
become clinically manifest [174]. Another study demon-
strates that higher education is protective against cognitive
deficits in elderly individuals with white matter lesions
[175]. Moreover, persons engaged in cognitively demanding
occupational [176–179], leisure [180, 181], and social activi-
ties exhibit a reduced risk for cognitive decline with aging
[13, 14, 176–180, 182–188]. Leisure activities that have
demonstrated procognitive effects include reading, discus-
sion groups, computer usage, participation in card and board
games, solving puzzles, playing musical instruments, and
learning a second language [180, 189–194]. Social activities
that have demonstrated procognitive effects include travel-
ing; attending theater, concerts, or art events; participating
in social groups or pension organizations; socializing with
family; and dancing [180, 191, 192, 194].

Underlying the effects of mental, leisure, and social
engagement on cognition is a concept called “reserve.”
According to the reserve hypothesis, impairments in cogni-
tion become manifest after a pool of brain and cognitive
resources is depleted. Brain reserve refers to structural
differences that increase tolerance to pathology, whereas
cognitive reserve refers to variability in approach to task
performance. The idea of brain reserve derives from studies
showing that the occurrence of dementia is lower in persons
with larger brain weights [195, 196] and that persons who
engage in intellectually stimulating activities experience less
hippocampal atrophy with aging [197]. Cognitive reserve
suggests that a person can mitigate the effects of brain pathol-
ogy by deploying pre-existing processing approaches or by
deriving alternative strategies [198, 199]. By corollary, per-
sons with decreased brain or cognitive reserve are more likely
to exhibit clinical impairments with age- or disease-related
insult given their fewer brain resources, whereas those with
a higher reserve have more resources to rely upon following
age- or disease-related insult, raising their threshold for
clinical impairments.

Contemporary views of brain and cognitive reserve
espouse more nuanced conceptualizations. Enriched envi-
ronments infused with challenging activities are thought to
effectuate the formation of new dendritic branches and syn-
apses. These morphological changes then deepen the brain’s
capacity to resist insult while increasing augmentation of glial

support cells, enhancement of the brain’s capillary network,
and the induction and incorporation of new neurons [200].
Indeed, preclinical work shows that stimulating environ-
ments increase neurogenesis [17, 201, 202] and upregulate
BDNF [203–205], benefits that contribute to neural plasticity
and extend to aging animals [206]. Enriched physical and
social environments may provide short-lived mild to moder-
ate stressors that induce locus coeruleus neurons to release
noradrenaline and facilitate the formation and maintenance
of adaptive memories [47], a process that could enhance
adaptive structural changes in the brain (brain reserve) and
cognitive and socioemotional learning (cognitive reserve).
Supporting the latter notion is a multiplicity of studies
showing that mental and socioemotional factors—including
positive coping, optimism, sense of purpose, self-efficacy,
and social support—are correlated with the stress response
[207], are essential for the maintenance of high resilience
[208–215], and are vital for mitigating age-related cognitive
decline [216–218].

Another strategy that is garnering increased attention
for enhancing brain and cognitive reserve is mindfulness
meditation. A meta-analytic review (of 21 studies with
approximately 300 participants) by Fox and colleagues
examined the structural brain changes associated with mind-
fulness meditation and found that several brain regions
consistently exhibited morphological differences in practi-
tioners: the frontopolar cortex, sensory cortex, insula,
anterior and mid-cingulate, hippocampus, and orbitofrontal
cortex [219]. These areas are known to participate in
awareness, attention, and emotional regulation, but are
adversely affected in age-related disease and mood disorders
[220, 221]. Tang and colleagues [222] reviewed a myriad of
studies to determine the effects of mindfulness meditation
on structural brain changes, functional activation, and
neural connectivity. These authors reported that mindful-
ness meditation was associated with structural (in the
prefrontal cortex, anterior and posterior cingulate, insula,
hippocampus, and amygdala), functional activation (pre-
frontal cortex, anterior cingulate, amygdala, insula, and
orbitofrontal cortex), and neuroplastic changes (anterior
cingulate cortex and prefrontal cortex) in the brain of medi-
tators versus controls [222]. While the underlying mecha-
nisms that contribute to the structural, functional, and
neuroplastic changes associated with mindfulness have yet
to be elucidated fully, it seems plausible that neurogenesis,
dendritic branching, and synaptogenesis may be involved in
emotional and cognitive regions of the brain, particularly
given that meditation reduces cortisol release following
stress [223–225].

Correspondingly, it is also held that cognitive rehabilita-
tive protocols may serve as a form of enriched environment
and effectuate cognitive gains in the aging population.
Approaches to cognitive rehabilitation involve exercises
carefully designed to harness neuroplasticity. Investigating
the effects of cognitive rehabilitation in healthy older adults
and persons with mild cognitive impairment, a Cochrane
review demonstrated that immediate and delayed verbal
recall improved significantly following training as compared
to a no-treatment control condition [226]. Extending these
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studies further, another review assessed the effect of cognitive
interventions on activities of daily living, mood, quality of
life, and metacognition in persons with mild cognitive
impairment. The authors found that computerized cognitive
interventions conferred benefits to mood compared to
controls, whereas therapist-based and multimodal interven-
tions had a greater impact on activities of daily living and
metacognitive outcomes than control conditions [227]. The
notion that computerized cognitive rehabilitation may
convey positive cognitive effects during aging is intriguing
given that (1) these techniques can be deployed in a relatively
quick and cost-effective manner; (2) the training can be
personalized; (3) the rehabilitation can be used to target
vulnerable and underserved populations, that is, persons
who are homebound, residents of nursing homes, and
those without access to transportation; and (4) preliminary
evidence suggests residual effects are retained long-term
(5 years) [228].

4. Diet and Healthy Lifestyle

Food consumption is an intrinsically motivated behavior
with the potential to modulate brain structure and function.
Driving this behavior is energy demand: whereas the brain
comprises 2% of total body weight, it consumes 20% of the
total energy derived from nutrients [229]. The exorbitant
demand for energy derives from the requisite needs of
neurons to maintain ionic gradients across their membranes
to facilitate neurotransmission via oxidative metabolism.
Accordingly, neurons are extremely sensitive to mitochon-
drial dysfunction and oxidative stress [166, 230, 231].

The centrality of feeding behavior for survivability makes
it seem plausible that optimized food consumption repre-
sents a means to impact brain function positively. This
putative effect stems in part from the ability of dietary factors
to modulate synaptic plasticity by altering neurogenesis,
inflammation, antioxidant defense mechanisms, neurotro-
phin levels, and energy metabolism [232], mechanisms
similar to those induced by long-term PA [16]. For example,
preclinical studies suggest that increased consumption of
dietary fructose in the presence of an omega-3 fatty acid
deficiency adversely affects learning and memory [233] by
altering the function of molecules that are important in
mitochondrial bioenergetics [234] in key brain regions
such as the hippocampus [235]. Parallel evidence demon-
strates that nutritional content, along with the level and
frequency of food intake, effectuates changes in energy
metabolism and neuroplasticity [229]. Population-based
studies suggest that diets rich in polyphenols promote
better performance in several cognitive abilities in a
dose-dependent manner [9] and lower the risk of cognitive
decline [10, 11] in older persons. Accordingly, it is increas-
ingly held that bioactive substances in food represent a novel
target for lifestyle interventions that may promote healthy
brain aging and preserve cognitive function, especially in
aging adults at risk for nutritional deficits [236]. Given that
dietary modifications are considered by many to be safer
and more easily integrated into lifestyle changes than con-
ventional pharmacotherapeutics, several bioactive substances

that have received intense investigation are reviewed below
in brief.

Polyphenols (e.g., phenolic acids, stilbenes, lignans,
flavonols, and anthocyanidins) comprise a class of approxi-
mately 8000 compounds with antioxidant properties. These
compounds are found in fruits, vegetables, tea, wine,
juices, plants, and some herbs. Whereas polyphenols are
not considered “essential nutrients,” convergent evidence
does suggest that these factors can mitigate risk for neuro-
degenerative diseases, age-related cognitive decline, and
oxidative stress [12, 237–245] via mechanisms involving
the maintenance of metabolic homeostasis [241, 246] and
the promotion of synaptic plasticity [241, 247]. Several
dietary choices of polyphenols with putative neuroprotec-
tive [232], neuroplastic [248], neurogenic [249–251], and
anti-inflammatory effects [252] have been explored, with a
particular emphasis on curcumin, catechins, resveratrol,
and omega-3 fatty acids.

4.1. Curcumin. As a plant-based diarylheptanoid produced
by the plant turmeric, curcumin is a component of yellow
curry spice. This bright-yellow pigment was first isolated
more than a century ago and has been used extensively in
Indian medicine. Historically, it has been deployed to mitiga-
tion inflammation [253, 254], oxidative damage [255], and
amyloid build-up [256, 257]. The antioxidant capabilities of
curcumin appear to stem from its unique structure that can
donate H-atoms or transfer electrons from two phenolic
sites, allowing it to scavenge free radicals easily. More
recently, curcumin has garnered attention for its effects
on neuroplasticity and its ability to ameliorate processes
involved in brain aging and neurodegeneration.

Preclinical investigations show that dietary supplementa-
tion of curcumin 3 weeks prior to [258] and after [259]
experimentally induced traumatic brain injury partially
ameliorate the consequence of injury on markers of synaptic
plasticity (e.g., BDNF and cAMP response element-binding
protein), mechanisms that may partly involve the restoration
of energy homeostasis [258–260] and facilitation of neuro-
genesis in the dentate gyrus of the hippocampus [261]. Also,
curcumin may prevent secondary sequelae following brain
injury by inhibiting the formation of oligomers and fibrils
and the aggregation of amyloid proteins [262–264]. Interest-
ingly, curcumin appears to cross the blood-brain barrier.
Curcumin injected into the tail vein of rodents altered plaque
formation in a model of AD [265]. A recent meta-analysis
and systematic review of eight preclinical studies demon-
strated that curcumin significantly improved neurological
function in the central nervous system, an effect that was
proportional to dosage [266].

Recently, preclinical studies have focused on the effects of
curcumin administration on aging. One recent study has
demonstrated that curcumin rescued age-related loss of
hippocampal synapse input specificity of LTP by favoring
N-methyl-D-aspartic acid receptor activity [267]. Also,
curcumin and its metabolite, tetrahydrocurcumin, increased
the mean lifespan of at least three model organisms [268]
and modulated the expression of aging genes in some
models [269].

6 Neural Plasticity



Extending these studies to humans, a large population-
based study of elderly nondemented Asians investigated the
association between curry consumption and cognitive func-
tion, finding that persons who frequently consumed curry
scored significantly better on the Mini-Mental State Exami-
nation relative to those who infrequently consumed curry
[270]. Another 6-month randomized, placebo-controlled,
double-blind, clinical study of curcumin in persons with
progressive cognitive decline and memory found increased
serum amyloid beta-40, but not improvements on the
Mini-Mental State Examination [271]. Cox and colleagues
investigated the acute, chronic, and acute-on-chronic
effects of a curcumin formulation (400mg) on cognitive
function, mood, and blood biomarkers in healthy older
adults. They found that curcumin significantly improved
(1) performance in attention and working memory 1 hour
following administration as compared with placebo, (2)
working memory and mood following 4 weeks of treat-
ment, (3) alertness and contentedness 1 hour and 3 hours
after a single dose following chronic treatment, and (4) LDL
cholesterol via reduced total concentration [272]. Daily and
colleagues examined the efficacy of curcumin for alleviating
the symptoms of arthritis and found supportive treatment
evidence for turmeric extract (about 1000mg/day of curcu-
min) [273], suggesting a translational avenue for its anti-
inflammatory effects. Derosa and colleagues evaluated the
efficacy of curcuminoid supplementation on circulating
concentrations of IL-6 in randomized controlled trials
and reported a significant effect of curcumin in lowering
circulating IL-6 concentrations, an effect that was more
evident in patients with greater systemic inflammation
[274]. A systematic review and meta-analysis of random-
ized controlled trials evaluated the efficacy of curcumin
supplementation on circulating levels of TNF-α and
reported a significant effect of curcumin in lowering circu-
lating TNF-α concentration [275]. The ability of curcumin
to mitigate chronic inflammatory processes is important
because chronic inflammation dysregulates neurotransmis-
sion and trophic factor signaling and disrupts the processes
of neurogenesis and neuroplasticity [276–279]. Moreover,
chronic inflammatory processes can contribute to glutamate-
mediated excitotoxicity [279] and loss and dysfunction of
glial cells [280–282].

To date, the results from preclinical research suggest that
curcumin may benefit the brain and cognitive function
during aging, but the level of evidence is still weak. One of
the main limitations with curcumin studies and interventions
is related to its limited bioavailability, a factor that could
be addressed by chemical modification, conjugation with
lipophilic compounds or coadministration with other com-
pounds. No clinical trials to date provide conclusive evi-
dence of the efficacy of long-term curcumin consumption
for preventing or treating cognitive decline with aging.
More studies are needed to explore the effects of this
factor in persons with different genetic backgrounds and
at different states of health and wellness.

4.2. Catechin Polyphenols. Found naturally in teas, cate-
chin polyphenols are potent bioactive compounds with

antioxidant [283, 284] and anti-inflammatory properties
[285, 286]. Their ability to donate hydrogens and scavenge
reactive oxygen and nitrogen species underlies their antioxi-
dant capabilities [283, 284]. Among the catechins found in
tea, (−)epigallocatechin-3-gallate (EGCG) is a major constit-
uent and therapeutic agent. EGCG has been shown to have
neuroprotective functions that include antioxidant, iron
chelating, and anti-inflammatory properties [287, 288]. Also,
EGCG promotes amyloid precursor protein processing via
the nontoxic amyloid precursor pathway [289] to reduce
amyloid-beta pathology [290]. EGCG also appears to modu-
late cell survival genes [291].

Emerging preclinical and clinical evidence has suggested
that EGCG modulates mechanisms involved in learning
and cognitive decline. EGCG facilitated glutamate release
by enhancing Ca2+ entry through voltage-dependent Ca2+

channels in isolated nerve terminals from rat cerebral cor-
tex, a process linked to protein kinase C (PKC) activation
[289, 291, 292]. This ability is important because increased
release of glutamate in the brain has been shown to be a
proxy for learning and memory [293, 294]. EGCG also
affected synaptic plasticity as high-frequency stimulation-
evoked LTP was enhanced following preincubation of
hippocampal slices with EGCG [295]. Another study has
demonstrated that the application of EGCG modulated
synaptic transmission and produced a dose-dependent
improvement in the induction of LTP in the rat in vivo
[296]. Moreover, long-term administration of green tea
catechins to rats improved their reference and working
memory-related learning ability and decreased reactive oxy-
gen species concentrations in the hippocampus [297]. These
results are not surprising given the relationship of EGCG to
neurogenesis and BDNF: oral administration of EGCG
enhances cell proliferation and increases the number of
progenitor cells in the hippocampus of rodents [250, 251].
Submicromolar concentrations of EGCG (<0.1μg/ml) of
unfractionated green tea and low concentrations (<0.5μM)
of EGCG potentiated the neuritogenic ability of low-
concentration BDNF [298].

Parallel study has investigated the effects of catechins in
humans. A large-scale study of middle-aged adults investi-
gated the long-term association between polyphenol intake
and cognitive performance, finding that catechins were
positively associated with language and verbal memory
[299]. A study of community-living Chinese adults aged
55 years or older demonstrated that consumption of black
and oolong tea was associated with lower risks of cognitive
impairment and decline after a 1- to 2-year follow-up [300].
A cross-sectional study of community-dwelling Japanese
adults aged 70 years or older examined the association
between green tea consumption and cognitive function,
finding that higher consumption of green tea was associated
with a lower prevalence of cognitive impairment as assessed
by the Mini-Mental State Examination [301]. In a small
interventional study in healthy volunteers, increased brain
activity on functional magnetic resonance imaging in the
dorsolateral prefrontal cortex, a proxy for memory process-
ing, was reported in a dose-dependent manner following
administration of green tea [302]. The effects of green tea

7Neural Plasticity



consumption on the brain activity of healthy volunteers were
measured using simplified EEG during passive activity in
another study, with findings demonstrating significantly
increased theta waves between 30 minutes and 1-hour post-
consumption, suggesting a role for enhancing cognitive
function [303].

4.3. Resveratrol. As a plant-based stilbene found in grapes,
wine, and peanuts, resveratrol possesses significant free
radical scavenging capabilities [304] given its three OH
groups in positions 3, 4, and 5; aromatic rings; and a double
bond in the molecule. Recently, it has garnered increased
attention amidst reports of its neuroprotective and antiamy-
loid properties [305, 306] in rodents through mechanisms
that likely involve oxidative stress [306], energy homeostasis
[307], and neural plasticity [308, 309]. Bolstering this notion
are cell culture studies that demonstrated that resveratrol
reduced amyloid beta accumulation, ROS, and apoptosis
[310] via modulation of nuclear factor-kB and Sirtuin 1
pathways [310–312]. Some preclinical studies suggest that
resveratrol extends the lifespan [310, 313, 314]. For example,
resveratrol increased cell survival by stimulating Sirtuin 2, a
change that increased DNA stability, slowed aging, and
extended the lifespan by 70% in yeast models [315]. Resvera-
trol added to the food of seasonal fish in early adulthood
induced a dose-dependent increase of median and maximum
lifespan [313]. Dietary consumption of resveratrol enhanced
proliferative states in neuronal stem cells in the rat hippo-
campus [316]. Several parallel preclinical studies have
demonstrated that resveratrol attenuated stress-induced
learning deficits, depressive symptoms, and hippocampal
degeneration by mechanisms that involved the restoration
of BDNF [308, 309, 317–320]. Altogether, this preclinical
data provides evidence that resveratrol treatment may be
efficacious for improving mood and cognitive function.

Extending this line of investigation to humans, one
small-scale, randomized, placebo-controlled, double-blind
trial with Concord grape juice supplementation for 12 weeks
demonstrated that older adults with memory decline but not
dementia significantly improved in a measure of verbal
learning [321]. Also, a double-blind, placebo-controlled
study tested whether supplementation with resveratrol
enhanced memory performance in older adults, finding that
administration of 200mg of resveratrol daily with 320mg
quercetin for six months duration in healthy older adults
(50–80 years) effectuated greater hippocampal activity at rest
(as assessed by functional magnetic resonance imaging) and
improved memory performance [322]. Notwithstanding,
low bioavailability of resveratrol is a major drawback [323].
Therefore, methods to enhance bioavailability (nanosized
particles and oral lozenges) are being investigated [324–326].

4.4. Omega-3 Fatty Acids.Whereas transfats have deleterious
effects in the brain, omega-3 fatty acids (found in oily fish
such as salmon, mackerel, herring, anchovies, menhaden,
and sardines) have neuroprotective effects. Omega-3 fatty
acids [e.g., α-linolenic acid, eicosapentaenoic acid, and
docosahexaenoic acid (DHA)] are polyunsaturated fatty
acids that are vitally involved in neuronal physiology. Among

the omega-3 fatty acid family members is DHA, one of the
most important because of its role in maintaining the
structural balance of cell membranes, its ability to mediate
phospholipid signal transduction at the synapse, and its
ability to modulate enzymatic activity [327, 328]. Also,
DHA stabilizes molecular mechanisms important for mito-
chondrial function [329], brain glucose utilization [330],
and oxidative stress [331]. Dietary DHA also contributes to
epigenetic changes that confer resilience to metabolic pertur-
bations [332]. Notably, humans are reliant on consumption
of dietary DHA from oily fish since the body is inefficient
at synthesizing it. Clinical evidence suggests that dietary
deficiencies can have adverse cognitive effects [333], yet one
study demonstrated that less than half of women consume
the recommended dietary allowance [334, 335], a trend that
can be reversed with supplementation. Preclinical studies
show that dietary restrictions in omega-3 fatty acids are
associated with reductions in neuronal size and neurotrophin
levels [336], whereas dietary supplementation reverses age-
related impairments in LTP and depolarization-induced
glutamate transmitter release [337], effectuates increased
levels of hippocampal neurotrophin levels [331], and upre-
gulates genes that are important for maintaining synaptic
function and plasticity [338].

A number of studies on omega-3 fatty acids have been
extended to humans. Epidemiological studies demonstrate
that high intake of fish rich in polyunsaturated fatty acids
is associated with positive cognitive function. Results from
the Rotterdam study demonstrate that high fish intake is
inversely associated with incident dementia at baseline and
at 2-year follow-up [339]. Elderly persons in the PAQUID
cognitive and functional aging study who ate fish or seafood
at least once a week exhibited a significantly lower risk of
developing dementia in the 7-year follow-up period [340].
Similarly, community-dwelling elders in the Chicago Health
and Aging Project who were in the upper quintile for
consumption of saturated fat had a twofold increased risk
for AD as compared to persons in the lowest quintile [341],
suggesting that high intake of unsaturated, unhydrogenated
fats may be protective against AD. Another study investi-
gated whether omega-3 fatty acid intake is correlated with
gray matter volume in brain structures associated with
emotional circuitry, finding positive associations between
reported dietary omega-3 intake and gray matter volume in
the subgenual anterior cingulate cortex, right hippocampus,
and right amygdala, intimating a mechanism by which
omega-3 fatty acid intake may mediate memory, mood, and
affect regulation [342]. Other study demonstrated that
weekly consumption of baked or broiled fish is positively
associated with increases in gray matter volumes in the hip-
pocampus, precuneus, posterior cingulate, and orbitofrontal
cortex [343]. Moreover, adults with subjective memory
impairment who were administered fish oil (eicosapentae-
noic acid +DHA) for 24 weeks in a randomized, double-
blind, placebo-controlled study exhibited increased cortical
blood oxygen level-dependent activity in the right poste-
rior cingulate and left superior frontal regions during a
memory task as well as enhanced overall working memory
performance [344], results that mirror earlier results of the
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Framingham Heart Study wherein DHA levels in the top
quartile were associated with a 47% lower risk of all-cause
dementia [345]. Another study investigated the effects of
DHA and arachidonic acid (240mg/day of DHA and arachi-
donic acid) on cognition in amnesic patients and found that
DHA supplementation improved cognitive dysfunction
secondary to aging and organic brain pathology [346].
Finally, a recent study demonstrated that higher-fasting
plasma levels of omega-3 polyunsaturated fatty acids corre-
lated with larger gray matter volume within the left rostral
anterior cingulate cortex, a characteristic that partially medi-
ated the relationship between cognitive flexibility in at-risk
(apolipoprotein E4 carriers) older adults [347].

Admittedly, a National Institute of Health State of the
Science Conference panel previously concluded that there is
insufficient evidence to recommend omega-3 fatty acids for
age-related cognitive decline. Notwithstanding, there are
ongoing clinical trials designed to elucidate efficacy, trials
that may be chiefly beneficial for persons in the lower quartile
of omega-3 consumption or in at-risk groups for cognitive
decline [348].

4.5. Caloric Restriction and Intermittent Fasting. In the
context of adequate consumption of nutrients, caloric restric-
tion conveys lifespan and healthspan benefits, including
preservation of cognitive function. Convergent evidence
suggests that a reduction of caloric intake by 20–40%
extends the lifespan of organisms throughout phylogeny
[349]. Population studies in Danish and Norwegian men
and women revealed that involuntary caloric restriction
without malnutrition for periods of 2–4 years reduced
overall mortality rates [350]. Moreover, it has been shown
that centenarians from Okinawa consumed 17% fewer
calories than average Japanese adults, and they consumed
40% fewer calories than American adults [333]. A recent
review by Most and colleagues detailed the positive health
benefits demonstrated from several recent randomized tri-
als, reporting that caloric restriction in humans effectuate
some of the same metabolic and molecular adaptations
seen in preclinical models of longevity [351]. Finally, a
30% reduction in calories for 3 months has been associated
with a 20% improvement in verbal memory in healthy elderly
adults [352].

The mechanisms underlying caloric restriction appear to
be multifold. Caloric restriction has been shown to increase
cellular repair of DNA [353], reduce oxidative stress [354],
improve the metabolism of glucose [355], and optimize
immune [356] and neuroendocrine function [357, 358].
Moreover, caloric restriction counteracts age-related alter-
ations in the expression of genes related to synaptic transmis-
sion [359]. For example, caloric restriction increases the
expression of BDNF, TrkB, and NR2B subunits of NMDA
receptors [359, 360] to mitigate age-related decrements in
the hippocampus [361, 362]. Similarly, intermittent fasting
exerts neuroprotective effects. It has been shown that
synaptic resilience and function [363], levels of stress protein
chaperones [364, 365], and neurotrophic factors [364] are
increased following intermittent fasting, effects that may be
particularly beneficial during times of injury [366].

5. Conclusions and Future Directions

Finding an effective treatment for age-related cognitive
decline represents an unmet goal. However, considerable
progress has been made in better understanding how
PA and diet modulate common neuroplasticity substrates
(neurotrophic signaling, neurogenesis, inflammation, stress
response, and antioxidant defense mechanisms) in the brain
[16]. Accordingly, this study highlights the importance of
lifestyle modification for protecting cognitive function and
brain health during aging and advocates for higher levels of
PA and consumption of healthy foods to optimize neural
plasticity. Once plasticity has been primed, cognitive training
and rehabilitation can be used to facilitate the reorganization
and proper function of cognitive circuits (to enhance brain
reserve) and practice processing strategies and skills that
translate to daily living (cognitive reserve). The deployment
of techniques to optimize lifestyle are critical given the
expanding size of the aging population juxtaposed with
evidence that 97% of adults nationwide fail to exhibit healthy
lifestyle characteristics [367]. Undoubtedly, the success of
healthy lifestyle campaigns will require more emphasis on
midlife, long-term, preventive approaches—with the goal of
promoting positive health habits that delay progression and
overt cognitive decline. Necessarily, these approaches should
be paralleled by research that aims to disentangle the effects
of lifestyle habits at different points along the aging and
disease continuum.

Admittedly, large-scale, well-conducted, randomized
controlled trials with PA, mental engagement, and dietary
intake are only beginning to emerge. Undoubtedly, there is
a need for future research in human populations that are
well standardized and stratified in relation to genetic back-
grounds, age, sex, and disease severity and duration. This
research is needed to better understand the optimum mode,
intensity, and duration of PA according to biologically
distinct subgroups. Moreover, future studies will need to
disentangle the individual and common pathways that
exist between PA, mental activity, diet, social factors, and
cognitive aging, particularly given evidence that various
components may exert additive protection against cognitive
decline [188]. In the area of cognitive rehabilitation, there
remains a need to derive protocols whose outcomes reify as
generalized, functional improvement in real-world environ-
ments [368]. While doing so, methodological standards will
necessarily have to be considered more fully. It is known that
noradrenergic function is essential for learning and memory
[47] and that optimization of noradrenergic function (via PA
or pharmacotherapeutics) during aging and disease [16, 47]
may likely optimize learning and memory in certain popula-
tions (e.g., Down syndrome, Alzheimer’s, and persons with
mild cognitive impairment). Future studies should take into
account the effects of noradrenergic function on cognitive
training and rehabilitation outcomes in aging populations.
Similarly, the duration of cognitive training and rehabilita-
tion should be considered more fully. It is known that the
effects of PA takes several weeks to reify at the behavioral
level, a reflection of mechanisms that likely involve BDNF,
neurogenesis, and the optimization of neurotransmitter
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levels [16]. Thus, it seems likely that the deployment of PA
prior to cognitive training and rehabilitation could be used
to normalize these factors to enhance outcomes, a notion that
awaits further study. Finally, a greater understanding of
antioxidant status in regard to plasma and brain bioavailabil-
ity is needed, as are studies that disentangle dose-response
effects, safety, tolerability, efficacy, and interactions with
other dietary factors. The latter studies are imperative as it
seems likely that the effects of nutrients in the brain are the
product of a mélange of metabolites and interacting factors,
not isolated factors per se. Together, these future efforts will
help to ensure that research at the frontiers of cognitive
neuroscience will provide a personalized approach to
intervention during states of health, disease, and aging.

In the interim, the Alzheimer’s Association and the
AARP have launched public health initiatives that aim to
foster a greater awareness of strategies that can be deployed
to optimize cognitive function during aging. The initiative
of the Alzheimer’s Association is called Maintain Your Brain
and promotes brain-centered healthy lifestyle choices (e.g.,
maintaining physical, mental, and social activity levels while
concomitantly consuming a low-fat diet rich in antioxidants)
[369]. Similarly, the AARP initiative, called Staying Sharp,
encourages aging individuals to engage in a lifetime of learn-
ing and provides strategies to augment memory [370]. While
neither program has been evaluated long-term, preliminary
results from a two-year, multidomain, randomized, con-
trolled study designed to prevent cognitive impairment are
promising. The intervention consisted of PA, cognitive
training, nutritional guidance, and social activities along
with the management of vascular risk factors. The control
group received regular health advice. After 2 years, a
comprehensive neuropsychological test battery revealed a
significant beneficial intervention effect on overall cognitive
performance, including the domains of memory, executive
function, and psychomotor speed. This novel study demon-
strates the possibility of preventing cognitive decline using a
multidomain intervention among older at-risk individuals
[371]. It also highlights the importance in convincing
patients of the value of a healthy lifestyle while concomi-
tantly underscoring the importance of preventive public
health policy.
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