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Abstract: Nuclear factor (erythroid-derived 2)-like 2 (Nrf2; encoded in humans by the NFE2L2
gene) is a transcription factor that regulates the gene expression of a wide variety of cytoprotec-
tive phase II detoxification and antioxidant enzymes through a promoter sequence known as the
antioxidant-responsive element (ARE). The ARE is a promoter element found in many cyto-
protective genes; therefore, Nrf2 plays a pivotal role in the ARE-driven cellular defense system
against environmental stresses. Agents that target the ARE/Nrf2 pathway have been tested in a
wide variety of disorders, with at least one new Nrf2-activating drug now approved by the US
Food and Drug Administration. Examination of in vitro and in vivo experimental results, and
taking into account recent human clinical trial results, has led to an opinion that Nrf2-activating
strategies — which can include drugs, foods, dietary supplements, and exercise — are likely best
targeted at disease prevention, disease recurrence prevention, or slowing of disease progression
in early stage illnesses; they may also be useful as an interventional strategy. However, this rubric
may be viewed even more conservatively in the pathophysiology of cancer. The activation of
the Nrf2 pathway has been widely accepted as offering chemoprevention benefit, but it may be
unhelpful or even harmful in the setting of established cancers. For example, Nrf2 activation
might interfere with chemotherapies or radiotherapies or otherwise give tumor cells additional
growth and survival advantages, unless they already possess mutations that fully activate their
Nrf2 pathway constitutively. With all this in mind, the ARE/Nrf2 pathway remains of great
interest as a possible target for the pharmacological control of degenerative and immunological
diseases, both by activation and by inhibition, and its regulation remains a promising biological
target for the development of new therapies.
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Introduction
Nrf2 and ARE

Cells respond to oxidative stress or electrophilic xenobiotics mainly through the tran-
scription factor Nrf2 (nuclear factor [erythroid-derived 2]-like 2). Nrf2 upregulates a
series of phase II detoxification and antioxidant genes,' as well as cell survival, anti-
inflammatory, energy metabolism, and other groups of genes that contain a cis-acting
element in their promoter region recognized as the antioxidant response element (ARE)
or electrophile response element (EpRE). Although there is some level of variability
allowed in the specific nucleotide positions, the consensus sequence for the core ARE
is generally identified as TGACnnnGC.>” The additional functional sequence content
of the binding site is referred to as the extended ARE (TMAnnRTGAY nnnGCRwwww)
which is proposed to define a more sufficient, functional ARE.”®
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Nrf2, sometimes referred to as the master regulator of
antioxidant, detoxification, and cell defense gene expres-
sion, was initially identified and cloned 20 years ago.’ This
discovery occurred just a few years after the initial reports
of the ARE,*'*!! and was coincident with identification of
the chemicals that induce phase II enzymes through the ARE
response.®'>* Prior to these discoveries, for years scientists
had suspected the existence of oxidative stress-sensing
mechanisms to explain corresponding gene regulation pat-
terns. In fact, the upregulation of antioxidant and detoxifi-
cation genes was noted for a variety of chemical inducers
prior to the discovery and knowledge of the ARE, Nrf2, or
Nrf2-regulating molecules.

Nrf2 activation

Under normal conditions, Nrf2 is bound in the cytoplasm to
Keapl (Kelch-Like ECH-Associated Protein 1, also known as
an inhibitor of Nrf2, INrf2) and targeted for ubiquitination and
proteasomal degradation. So called Nrf2 activators (oxidants,
electrophiles, and other agents) stabilize Nrf2 to allow it to
migrate to and accumulate in the nucleus.'*!* This typically

Electrophiles
and oxidants

Cytoplasm

Nucleus

occurs by reaction with cysteine thiols on Keap1 and interfer-
ence with its Nrf2 binding, thereby decreasing the ubiquitin
E3 ligase activity of the overall Keapl complex,'** and also
possibly occur via kinase-dependent phosphorylation of Nrf2,
although the relative contribution of kinases to Nrf2 activation
has been suggested to be lower than the Keap1 sensor activity
(Figure 1).**% Demonstration of the regulation of the Nrf2
pathway by phosphorylation of Nrf2 at serine and threonine
residues through phosphatidylinositol 3-kinase (PI3K), c-Jun
N-terminal kinase (JNK), and extracellular signal-regulated
protein kinase (ERK) creates opportunities for new approaches
to controlling Nrf2 activation in future work.?

The mechanism of activation is potentially relevant to
additional effects of Nrf2 activators and should be kept in
mind during new drug development. For example, drug can-
didates that act as electrophiles and react with Keap1 thiol
groups could act on other electrophile-sensitive pathways,
such as histone deacetylase enzymes.”® Hundreds of genes
contain the ARE in their regulatory promoter regions.?
Stabilized Nrf2 that migrates into the nucleus can form het-
erodimers with other proteins such as small Maf proteins,>*’

Proteosomal
Y degradation of
Nrf2

Kinases

Figure | Schematic representation of the Nrf2/Keap| intracellular pathway.

Notes: Under normal conditions, Keap| binds Nrf2 in the cytoplasm and promotes both the Cullin-3 containing ubiquitin E3 ligase ubiquitination of Nrf2 and its targeting
for degradation by the proteasome. When Nrf2 is stabilized through electrophiles, oxidants, or other agents that can interact with Keap| cysteine thiols, or by agents that
increase kinase-dependent phosphorylation of Nrf2, it can accumulate in the nucleus, form heterodimers with small Maf proteins, and bind with the ARE of target genes.
Abbreviations: Nrf2, nuclear factor (erythroid-derived 2)-like 2; ARE, antioxidant response element; Keap |, Kelch-Like ECH-Associated Protein .
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and then bind to and interact with gene promoter ARE
sequences and modulate gene transcription. This is usually
discussed in terms of Nrf2-responsive gene upregulation, but
some genes are downregulated following Nrf2 activation as
well. Following translocation to the nucleus, Nrf2 repres-
sion has been demonstrated based on Keapl import into
the nucleus and either degradation of Nrf2 in the nucleus,?
or export of Nrf2 out of the nucleus and degradation in the
cytosol,” both of which constitute a means of turning off
Nrf2 signaling and preventing permanent induction of Nrf2-
regulated genes.

Recently, Narasimhan et al documented the direct
involvement of microribonucleic acids (miRNAs) to mediate
posttranscriptional tuning of Nrf2 and its associated redox
homeostasis mechanism.*® In another study, Cheng et al’!
have highlighted how Nrf2 can be regulated indirectly by
miRNAs via control of redox signaling. It has also been
shown that a closely related family member (Nrfl) can also
engage the ARE and either compete with or inhibit Nrf2 from
activating ARE-dependent gene transcription.’?33

Nrf2 has established functions in endo/xenobiotic detox-
ification, antioxidants, and antiinflammatory response.
Based on numerous biochemical studies and global gene
expression profiling,?343¢ it is now evident that both the
Keapl-dependent and Keapl-independent Nrf2 pathways
control the gene expression of a battery of cytoprotective
and detoxifying enzymes and play a vital role in maintain-
ing redox cellular homeostasis.’”* A substantial literature
documents that an imbalance of cellular redox status
contributes to the pathogenesis of degenerative and immu-
nological disorders. Thus, Nrf2 activation or inhibition
responding to cellular oxidative and electrophilic stress,
and designed to restore redox homeostasis, paves a new
way to understand, prevent, or even cure these complex
diseases.

In the present work, Nrf2 transcription factor (NFE2L2)
binding sites were identified in the 25 genes with the high-
est fold-induction from our previous phytochemical Nrf2
activation study using Protandim® (LifeVantage, Inc., Sandy,
UT, USA; a mixture of extracts of milk thistle, bacopa, ash-
wagandha, green tea, and turmeric)* and used to generate a
sequence logo using Weblogo 3 (http://weblogo.threeplusone.

com/).*'*2 The ARE motif sequence logo generated from the
upregulated genes in our prior study is shown in Figure 2;
however, while it is only based on sequence information and
not bona fide Nrf2 binding studies, it allows for comparisons
against the consensus ARE and chromatin-immunoprecip-
itation (ChIP)-verified Nrf2 binding sequences. It depicts,
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Figure 2 Typical ARE sequence logo. An ARE sequence logo was generated using
predicted Nrf2 binding sites in the regulatory regions of the highest upregulated
genes from Hybertson et al,** in which cultured human umbilical vein endothelial
cells were treated with a phytochemical Nrf2 activator mixture.

Notes: Using oPOSSUM 3.0 web-based software (http://opossum.cisreg.ca/
oPOSSUM3/) we evaluated Nrf2 binding sites in the 25 genes with the highest
fold-induction from our previous phytochemical Nrf2 activation study using
Protandim® (LifeVantage, Inc., Sandy, UT, USA; a mixture of extracts of milk thistle,
bacopa, ashwagandha, green tea, and turmeric), examining 10,000 bases upstream
and 5,000 bases downstream of the transcription start site and aligning potential
Nrf2 binding sites.**# Thirty one Nrf2 binding sites were identified in 14 of the 25
genes that were upregulated by the Nrf2 activator.*

Abbreviations: Nrf2, nuclear factor (erythroid-derived 2)-like 2; ARE, antioxidant
response element.

as expected, a match between the gene data and the corre-
sponding bases from the central part of the extended ARE
(RTGAYnnnGCR),”® where R=A or G,andY=Cor T.

Review of genes and results for
degenerative and immunological
disorders pertaining to Nrf2

Nrf2 target genes
Thimmulappa et al investigated Nrf2-regulated genes induced
by the chemopreventive agent sulforaphane using oligonucle-
otide microarray.** In the study, a transcriptional profile of
the small intestine of wild-type (nrf2 +/+) and knock out
(nrf2 —/—) mice treated with vehicle or sulforaphane was gen-
erated. Seventy seven Nrf2-upregulated genes were identified,
including NAD(P)H:quinone reductase (NQOI), glutathione
S-transferase (GST), y-glutamylcysteine synthetase, uridine
diphosphate-glucuronosyltransferases, and epoxide hydrolase.
Also identified were genes encoding for cellular nicotinamide
adenine dinucleotide phosphate (NADPH)-regenerating
enzymes, including the following: glucose 6-phosphate dehy-
drogenase, 6-phosphogluconate dehydrogenase, and malic
enzyme; various xenobiotic metabolizing enzymes; antioxi-
dants such as glutathione peroxidase, glutathione reductase,
ferritin, and haptaglobin; and biosynthetic enzymes of the
glutathione and glucuronidation conjugation pathways.

To identify direct targets of Nrf2, Malhotra et al used
mouse embryonic fibroblasts with either constitutive nuclear
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accumulation (Keap/—/—) or depletion (Nrf2—/—) of Nrf2
to perform ChIP with parallel sequencing (ChIP-Seq) and
microarray profiling.** Integrating ChIP-Seq and microarray
analyses, 645 basal and 654 inducible direct targets of Nrf2
were identified, with 244 genes at the intersection. Further
gene ontology (GO) analysis revealed that ‘cell prolifera-
tion’ dominates the basal gene set and ‘response to oxidative
stress’ genes are the most prominent in the inducible gene
set. Recently, Chorley et al conducted ChIP-sequencing
experiments in lymphoid cells treated with the dietary
isothiocyanate (sulforaphane) and carried out follow-up
biological experiments on candidates.?® They found 242
high confidence, Nrf2-bound genomic regions; 96% of
these regions contained Nrf2-regulatory sequence motifs.
A microarray gene expression study revealed that 508 genes
changed by 1.3-fold or greater, with 70 of them having both
ChIP-Seq peaks and gene expression changes. Hirotsu et al
used the ChIP-Seq approach to identify binding sites of Nrf2
and MafG throughout the genome. They found a correlation
with ARE motifs that was not seen in Nrf2-binding sites that
did not also bind MafG. They also observed that Nrf2-MafG
target genes included genes involved in cytoprotective and
metabolic functions.?

It is, of course, important to note that the specific condi-
tions such as sampling protocol, Nrf2 activation approaches
(eg, chemical or genetic), potency of Nrf2 activators utilized,
and cell/tissue types studied are all critical to monitoring the
transcriptional activation of any gene. That is, the different
experimental conditions and different antibodies used in
unique assays may result in identification of different Nrf2-
dependent gene profiles, although cytoprotective genes are
mostly observed. A comprehensive description of all Nrf2-
regulated genes is beyond the scope of this review, though
here we do include some example genes and their products.

The NOO1 (NAD(P)H Dehydrogenase, Quinone 1) gene
is one of the most robust responders to both chemical and
genetic activation of Nrf2.%4” This gene is a member of the
NAD(P)H dehydrogenase (quinone) family and encodes a
cytoplasmic 2-electron reductase which reduces quinones
to hydroquinones. Lower NQOI1 activity caused by gene
mutations has been associated with tardive dyskinesia,*® an
increased pulmonary susceptibility to ozone,* and suscepti-
bility to various forms of cancer.®*>' In addition, NQO1 binds
and protects the tumor suppressor p53 against proteasomal
degradation; thus, it has even broader cytoprotective roles,
beyond its enzymatic functions.*

The aldo-keto reductases (AKRs) are some of the most
inducible Nrf2 target genes in human cells and tissues.™

The AKR superfamily comprises enzymes that catalyze the
NADPH-dependent reduction of a wide variety of carbonyl
compounds such as glucose, steroids, glycosylation end-
products, and lipid peroxidation products, as well as xeno-
biotic aldehydes and ketones.>* Working together, the AKRs
get the carbonyl group ready for consequent conjugation, for
instance, glucuronidation and sulfation, and eventually for
excretion. As a result, AKRs play an important role in the
phase II detoxification of a large number of pharmaceuticals,
drugs, and xenobiotics.

Heme oxygenase-1 (HO-1) is an enzyme that catalyzes
the degradation of heme. This reaction generates carbon
monoxide, biliverdin, and free iron which are responsible for
much of the biologic activity of HO-1, including antiinflam-
matory and antioxidant effects.’>7 Nrf2 participates in the
regulation of the gene expression of HO-1, which in concert
with bilirubin reductase generate the antioxidants carbon
monoxide and bilirubin.>® The upstream regulatory regions
of the gene-encoding heme oxygenase 1 contain multiple
ARESs, which are responsible for its robust inducibility by
various small-molecule Nrf2 activators.®

Glutathione reductase is another Nrf2-regulated enzyme
which plays a critical role in maintaining cells’ reducing
environment and in battling oxidative stress.’** Furthermore,
transcription of SLC7A11 (solute carrier family 7 [anionic
amino acid transporter light chain, xc-system], member 11,
also known as xCT) is regulated by Nrf2 and plays an impor-
tant role in cellular cystine-glutamate exchange, thereby
contributing to regulation of glutathione synthesis and
intracellular glutathione levels.* ¢

Degenerative and immunological

disorders

Degenerative and immunological disorders — examples of
which include atherosclerosis, inflammatory bowel disease
(IBD), diabetes, rheumatoid arthritis, human immunodefi-
ciency virus/acquired immunodeficiency syndrome (HIV/
AIDS), neurological disorders, sepsis, cancer, and many
others — affect more than 45 million people worldwide.
Though the illnesses are very different, the Nrf2 pathway
plays a role in many of them.

Atherosclerosis

Atherosclerosis is a disorder of the arterial vasculature marked
by inflammation and plaque formation. Collins et al have found
that myeloid-derived Nrf2 activity attenuates atherosclerosis
development, liver inflammation, and fibrosis associated with
obesity in an obese hypercholesterolemic mouse model.®
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Similarly, in low-density lipoprotein receptor-deficient mice,
Ruotsalainen et al found that Nrf2 deficiency specific to bone
marrow-derived cells aggravates atherosclerosis, and that
Nrf2 deficiency in macrophages promotes inflammation and
foam cell formation.® Prior research in our laboratory using
primary human umbilical vein endothelial cells revealed that
19 genes that have been associated with atherosclerosis in
the literature were up or downregulated by treatment with a
phytochemical mixture Nrf2 activator;* we also found that
16 of them (84%) were regulated by Nrf2 activation in the
opposing direction to that taken by the atherosclerosis disease
process.* On the other hand, Barajas et al found that in apo-
lipoprotein E-deficient (Apoe [-/-]) male mice, knocking out
Nrf2 decreases aortic atherosclerosis.***’” Combined, the work
suggests the need to consider roles for both Nrf2 activators
and Nrf2 inhibitors in future atherosclerosis research.

IBD

IBD is a group of chronic inflammatory disorders of the
intestine. Khor et al investigated the role of Nrf2 in the regula-
tion of dextran sulfate sodium-induced experimental colitis
in mice and concluded that Nrf2 contributed to intestinal
protection through regulation of proinflammatory cytokines
and induction of phase II detoxifying enzymes.®® Arisawa
et al found that a Nrf2 gene polymorphism that reduces the
activity of Nrf2 was associated with increased risk of IBD
ulcerative colitis in a Japanese study population.® Because
inflammation and oxidative stress feature prominently in
IBD,” studies of the potential benefits of Nrf2 activation and
relevant drug development are warranted.

Type | diabetes

Type I diabetes is a disorder of the human immune system in
which the patient’s pancreas produces little or no insulin. In
promising cell culture work, Nrf2 overexpression made model
[-cells resistant to nitric oxide-induced apoptosis.” In a study
of the link between oxidative stress and insulin resistance in
cardiac cells, Tan et al found that ERK-mediated suppression
of Nrf2 activity leads to the oxidative stress-induced insulin
resistance in adult cardiomyocytes and downregulated glucose
utilization in the diabetic heart.” Zheng et al induced diabetes
in Nrf2 (+/+) and Nrf2 (-/-) mice by streptozotocin injection
to determine whether Nrf2 activators sulforaphane or cin-
namic aldehyde attenuate renal damage and preserve renal
function.” They found that both sulforaphane and cinnamic
aldehyde significantly attenuated common metabolic disorder
symptoms associated with diabetes in Nrf2 (+/+) but not in
Nrf2 (-/-) mice, suggesting that targeting Nrf2 activation might

be used therapeutically to improve metabolic disorders and
attenuate renal damage induced by diabetes.”™

HIV/AIDS

HIV/AIDS is a chronic immunological condition in
which HIV attacks the immune system, which can lead
to AIDS. Zhang et al studied the effect of Nrf2 on Tat-
induced HIV-1 transcription in multinuclear activation of
galactosidase indicator cells.” Their data show that Nrf2
is involved in inhibiting Tat-induced HIV-1 long-terminal
repeat transactivation, suggesting that Nrf2 might be an
important molecular target for inhibiting HIV-1 transcrip-
tion. Because evidence suggests that HIV infection causes
oxidative stress and damages epithelial barrier function
in the lung, Fan et al studied alveolar epithelial cells from
HIV-1 transgenic rats cells in vitro and found that Nrf2
activation both improved the expression of tight junction
proteins and also restored the ability of the cells to form
tight barriers.”

Rheumatoid arthritis

Increasing evidence indicates that oxidative stress may play
a key role in the development of rheumatoid arthritis.’®””
Wruck et al used antibody-induced arthritis in Nrf2-knockout
and Nrf2-wild-type control mice to study the role of Nrf2
against oxidative stress in rheumatoid arthritis; they con-
cluded that oxidative stress is significantly involved in car-
tilage degradation in experimental arthritis, and the presence
of a functional Nrf2 gene is a major requirement for limiting
cartilage destruction.” Maicas et al analyzed the relevance
of Nrf2 in the effector phase of a rheumatoid arthritis animal
model and found that Nrf2 deficiency accelerates the inci-
dence of arthritis and aggravates joint disease.” The results
support a protective role for Nrf2 against joint inflammation
and degeneration in rheumatoid arthritis.”

Neurodegenerative disorders

In several studies, Nrf2 has been shown to play an important
role in mouse models of neurodegenerative diseases such as
Parkinson’s disease and Huntington’s disease.**3 Additionally,
Nrf2 has been reported to be relevant to acute neurological
disorders such as stroke.®** Oxidative stress plays an impor-
tant role in these neurodegenerative disorders, including
the degeneration of dopaminergic neurons in Parkinson’s
disease,***” and Nrf2 may contribute to the beneficial role of
the neuroprotective Parkinson Protein 7 (PARK7, also known
as DJ-1).3¢ The protective results from small molecule acti-
vators of Nrf2 in neurological disorders such as Parkinson’s
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disease provide a rationale for additional disease model studies
and the potential for human clinical trials in the future.®

Sepsis

Several studies have outlined a role for Nrf2 in sepsis or
Systemic Inflammatory Response Syndrome.® Studies in
mouse models have indicated that Nrf2 plays a critical role in
improving survival during sepsis.*® Recently, Kong et al dem-
onstrated that disruption of Keapl in leukocytes protected
against injury and mortality in a mouse cecal ligation and
puncture model of sepsis. Their findings indicate Nrf2 acts
as an immunomodulator in leukocytes and protects against
sepsis by contributing to control of the host inflammatory
response to bacterial infection.®

Review of Nrf2 in cancer

and chemotherapy

There have been several interesting publications in recent
years pertaining to the role of Nrf2 in both cancer prevention
and in cancer development/progression.”* This is a very
active field of research.” Nrf2 activation has been shown to
have chemopreventive benefits and effects that can support
cancer development and progression.

Recent research has indicated a distinctly negative role for
persistent Nrf2 activation in some cancer cells.”*® The main
idea is that certain types of cancer cells, including some lung,
endometrial, skin, breast, and prostate cancers, gain function by
constitutively activating the Nrf2 cell survival pathway. 14
This can occur by multiple mechanisms including mutations in
genes directly involved in the pathway such as Keap1,'02103:105
methylation of genes such as p66Shc (also known as SHC-
transforming protein 1) leading to their repression and sub-
sequent overexpression of Nrf2,!% increased expression of
Bcl-xL (B-cell lymphoma-extra large),'”” increased expression
of BRCAI (Breast Cancer 1, Early Onset),'® or other mecha-
nisms. For example, the adaptor protein p62 (Sequestosome
1, SQSTM1) is a target gene for Nrf2 and it is also capable of
binding to Keap1, which can lead to a positive feedback loop in
its transcriptional regulation and dysregulation of apoptosis and
autophagy.®!!"” The net result is that these types of cancer
cells remain proliferative in oxidatively-stressed environments,
have increased Nrf2-dependent metabolic activities that can

support cell proliferation,'

and can gain resistance against
some types of cancer drugs.!?!

The predominant way that Nrf2 activation has been stud-
ied in cancer has been constitutive, continuous utilization
of the pathway (for example, through mutations in Keapl

or Nrf2), but there may also be a possible role for increases

in Nrf2 signaling in some types of cancer that are not based
on Nrf2 or Keapl mutations."? This differs from the inter-
mittent activation of Nrf2 that occurs naturally through
consumption of certain foods (like broccoli) and spices,
Nrf2-activating dietary supplements, exercise, and Nrf2-
activating drugs. The Nrf2 pathway has been described as
having hormetic behavior, with beneficial effects observed
for intermediate levels of Nrf2 activation and deleterious
effects observed when there is too little or too much Nrf2
activation; in addition, it has been proposed that dietary con-
sumption of Nrf2 activators in foods and spices likely falls
within the healthy middle part of the activation range.?*!!?
Constitutive Nrf2 activation has been shown to have nega-
tive effects, but intermittent activation has not, although it
might still have undiscovered negative effects.

Cancer cells that do not constitutively upregulate the Nrf2
pathway might still benefit from its activation by other mecha-
nisms.”” It has been shown that Nrf2 activation gives cancer
cells a survival benefit” and that Nrf2 activation may also
participate in resistance to chemotherapy or radiation therapy.''*
For example, Nrf2 activation has been shown to contribute to
multi-drug resistance to chemotherapeutic agents in cultured
H69 lung cancer cells through the Multidrug Resistance Asso-
ciated Protein 1 gene (MRP1, also known as ABCC1)."> This
paradigm — that some types of cancer cells may resist chemo-
therapy by an Nrf2-dependent mechanism — has led to studies
that target Nrf2 inactivation in an attempt to make the cancer
cells more susceptible to the chemotherapeutic drug. Ren et al
used an Nrf2 inhibitor, brusatol, to decrease chemoresistance
of cancer cells to treatment with cisplatin and other drugs.!!°

Based on such findings, it may be logical to avoid
intentional Nrf2 activation during chemotherapy in case the
cancer cells utilize Nrf2 for survival or for drug resistance,
or at least attempt targeted strategies that do no benefit the
cancer cells. One reason for discontinuing intentional Nrf2
activation during cancer therapy is that it is unclear whether
it might alter the chemotherapy or radiotherapy response by
the cancer cells and/or normal cells, perhaps allowing cancer
cells to gain survival benefit against the therapy. An additional
reason is that some chemotherapy agents like tamoxifen
are prodrugs that require processing by liver cytochrome
P450 enzymes such as CYP2D6, the levels of which might
be changed by Nrf2 activation, because this could change
the patient’s response to the drug.!'”!"® Additionally, other
xenobiotic metabolism enzymes such as CYP2AG6 can be
upregulated by Nrf2 activation and have been implicated in
the activation of nitrosamines which could affect levels of
carcinogenesis.!'*!2* Notably, Wu et al recently concluded

24 submit your manuscript

Dove

Clinical Pharmacology: Advances and Applications 2014:6


www.dovepress.com
www.dovepress.com
www.dovepress.com

Dove

Clinical potential of Nrf2 pathway

that Nrf2 plays a central role in xenobiotic metabolism and
detoxification, but that Nrf2 activation had only a modest
effect on the regulation of the CYP enzyme genes.'?!

Drugs targeting Nrf2

Because Nrf2 has been shown to participate in cytoprotec-
tion against common pathophysiological pathways involv-
ing inflammation and oxidative stress, it has emerged as an
attractive drug target.'?*'?’ In recent years, research has been
highly focused toward the discovery of new Nrf2-related
drugs, including high-throughput screening approaches, 2”132
structure-based modeling,'33 and the testing and development
of molecules that target the Nrf2 pathway.-134-140

Dimethyl fumarate

Multiple sclerosis (MS) is an inflammatory disease in which
the myelin sheaths around nerve cell axons are damaged by
the immune system, leading to deterioration of function and
to neurological symptoms. About 80% of MS patients initially
present with the relapsing-remitting subtype, which is char-
acterized by disease relapses followed by periods (months to
years) of remission, making prevention of relapse/extension
of remission period a good target for intervention.

In recent years, an oral formulation of dimethyl fumarate
(formerly known as BG-12 and marketed as Tecfidera®; Biogen
Idec, Inc, Weston, MA, USA), has been developed for treatment of
relapsing-remitting MS.!#-143 Notably, dimethyl fumarate has been
shown to activate the Nrf2 pathway in vitro, which is thought to
contribute to the drug’s dual antiinflammatory and neuroprotective
effects. Other mechanisms may also be relevant to the beneficial
effects of dimethyl fumarate in MS, including NF-kB inhibition.'*
InBiogen’s DEFINE (Determination of the Efficacy and Safety
of Oral Fumarate in Relapsing-Remitting MS) Phase Il clinical
trial, Tecfidera® significantly reduced the proportion of patients who
relapsed within 2 years compared with placebo.'5147

After receiving US Food and Drug Administration
approval on March 27, 2013,'%%14° Biogen quickly launched
their Nrf2-activating dimethyl fumarate drug (marketed as
Tecfidera®) for treatment of multiple MS into the US market.
Interestingly, the drug rapidly became a major sales success
in the marketplace by mid-2013. Greatly exceeding expecta-
tions, Biogen reported quarterly sales valued at $192 mil-
lion for the second quarter (reported on July 25, 2013).' It
remains to be seen whether the volume of sales will continue
to increase, but from an Nrf2 science perspective the success-
ful product launch helps validate overall biomedical interest
in the Nrf2 signaling pathway. Furthermore, the associated
postmarketing surveillance of the new drug will continue to

improve knowledge about the efficacy and safety of chronic
consumption of Tecfidera® — thought to exert its beneficial
effects by acting as a pharmaceutical Nrf2 activator — in a
large number of patients.

CDDO-Me

CDDO-Me (Methyl 2-cyano-3,12-dioxoleana-1,9(11)-dien-
28-oate, a synthetic oleanane triterpenoid, also known as
bardoxolone methyl) has been studied for its Nrf2 activation
properties and has been deemed a promising drug candidate
for treating many different degenerative illnesses, including
diabetic complications.®8!31-1% Research in animal models of
chronic kidney disease (CKD) indicated that functional Nrf2-
Keap]1 signaling is important to limiting the effects of oxidative
stress in CKD and its progression.'> The agent was also studied
in humans, and because CDDO-Me improved the estimated
glomerular filtration rate (¢eGFR) in patients with advanced
CKD in a randomized, placebo-controlled Phase II trial,'s!!*2
a follow-up Phase III trial enrolling over 2,000 patients was
initiated (ClinicalTrials.gov Identifier: NCT01351675).1%¢
Unfortunately the CDDO-Me trial was forced by its Inde-
pendent Data Monitoring Committee to be terminated in

November 2012 due to undisclosed safety concerns.

Activation of Nrf2 appears less suitable for reversing
advanced pathological conditions than for preventing initial
damage or slowing it once it starts. This is evident in the Phase
IT CDDO-Me clinical results in which patients with early
stage CKD showed some benefit in measured eGFR.'Y’

One possible reason suggested for the adverse events that
halted the CDDO-Me clinical trial was that the measured
eGFR benefit was a result of increased intraglomerular pres-
sure leading to not only short-term hyperfiltration but also
to longer-term accelerated nephropathy and renal function
loss.'**!58 Another reason is the possibility that CDDO-Me
interacts with other targets in addition to the Nrf2 pathway, as
has been noted for structurally related compounds.'** As noted
by Zhang, the original development of CDDO-Me was not
specifically targeted at Nrf2 activation, and new efforts at drug
discovery might yield comparably effective drugs addressing
the Nrf2 pathway, but with fewer off-target effects.'*’

A few examples of potential new agents

Wang et al recently used a high-throughput screening approach
from a synthetic library of 1.2 million small molecule com-
pounds to identify candidate ARE-inducing molecules, and
further studied candidate AI-3 (ARE Inducer-3)."3! The AI-3
molecule was shown to activate Nrf2 by inducing an ARE-
luciferase reporter gene in vitro, by increasing the production
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of ARE-driven NQOI1 protein production in cultured cells
in vitro, by inducing SKN-1-driven (analog of Nrf2) GST4
in Caenorhabditis elegans in vivo, and by increasing ARE-
regulated NQO1 expression levels in mouse liver and kidney
following intraperitoneal injection in vivo.'!

Recent demonstration of a role for miRNA molecules in
the regulation or tuning of Nrf2 activation and signaling®®*'
suggests a possibility for the development of miRNA-based
therapies that address activating or inhibiting the Nrf2 path-
way if off-target effect can be avoided.

Traditional Chinese medicine’s Si-Wu-Tang (SWT, which
translates as Four-Agents-Decoction)'® has been demon-
strated by gene array and pathway analysis studies to induce
gene expression via the Nrf2 pathway.”® SWT has been used
throughout Asia for about 1,000 years for treatment of men-
strual symptoms and menopausal difficulties, and continues to
play a role in the treatment of estrogen-related illnesses.'¢!163
In recent years SWT has also been shown in mice to have ben-
efit against radiation-induced bone marrow damage.'®+!6>

Cureveda LLC is a company (Baltimore, MD, USA)
focused on the development of therapeutics targeting the
Nrf2 antioxidant pathway. It has reported current activities to
develop a small molecule Nrf2 activator called VEDA-1209;
preclinical pharmacokinetic and pharmacodynamics testing
is underway and studies are planned for testing in animal
models of ulcerative colitis.

Evgen Ltd is a company (Liverpool, UK) focused on
the development of sulforaphane-based pharmaceuticals.'*
For new drugs that utilize Nrf2 activation, it has developed
a synthetic sulforaphane-cyclodextrin complex, called
Sulforadex®, with improved shelf stability over sulforaphane
alone. It reports completion of a first-in-man clinical study
of Sulforadex®, and indicates that a prostate cancer trial is
planned for 2014.

Potential development of Nrf2 inhibitors
There are cases where Nrf2 inhibition may be preferable
to Nrf2 activation. As noted above, some cancers gain an
advantage over therapy by utilizing constitutive Nrf2 activa-
tion to enhance survival mechanisms and facilitate increased
drug resistance. The idea of inhibiting those mechanisms
with another drug while treating with chemotherapy may
be worthwhile. Shutting down the Nrf2 signaling pathway
might restore chemotherapy sensitivity of some cancer
cells, and Nrf2 inhibitors might have benefits against other
disease processes as well.''® Some candidate inhibitors are
summarized in Table 1.

Table | Potential Nrf2 inhibitors

Retinoic acid All-trans retinoic acid was found to inhibit Nrf2-
mediated induction of ARE-driven genes. The
mechanism of retinoid-related Nrf2 repression
involves retinoid X receptor alpha binding to

Nrf2.I67,I68

6-Hydroxy-1- Protective effects were observed for 6-HMA on

methylindole- cisplatin-induced oxidative nephrotoxicity via Nrf2

169

3-acetonitrile inactivation.

(6-HMA)

Luteolin Luteolin has been shown in separate studies to both
inhibit and activate Nrf2-mediated induction of ARE-
driven genes.'*'7

Bleomycin Part of the mechanism of bleomycin-induced
pulmonary fibrosis has been shown to involve
suppression of Nrf2 activation. Although not the
goal of the study, this result suggests the possibility
that bleomycin could be a candidate for Nrf2
inhibitor drug development.'’

Brusatol Brusatol was identified as a selective inhibitor of the

Nrf2 pathway. It acts by increasing ubiquitination
and degradation of Nrf2. In cultured cancer cells
and xenografts, brusatol was shown to decrease
chemoresistance to treatment with cisplatin and
other drugs.''®

Abbreviations: Nrf2, nuclear factor (erythroid-derived 2)-like 2; ARE, antioxidant
response element.

Effects of diet, nutritional
supplements, and exercise
on the Nrf2 pathway
Diet
One interesting aspect of phytochemical activation of the
Nrf2 pathway is the possibility that the historical origination
of the use of certain Nrf2-activating foods and spices in the
human diet could have stemmed from perceived salutary
health effects of these agents,'” with possible contemporary
significance to healthy human diets.'”*'"
Recommendations for influencing Nrf2 activation by
dietary means have typically pertained to the demonstrated
activity of readily available food products like curcumin
from turmeric root and sulforaphane from broccoli and
other sources;'” ¥ many other relevant whole plant materi-
als and isolated phytochemicals have been identified.**!’
In one recent example, seaweed-based extracts (from
green alga Ulva lactuca, with focus on monounsaturated
fatty acid derivatives, active fraction selected by bioassay-
guided fractionation) have been shown to activate the Nrf2
pathway, upregulating Ngol gene transcription in mouse
hearts 12 hours after a single gavage treatment in vivo.'s In
another recent example, Heber et al found that sulforaphane,
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administered as an extract but given in a dose that could be
achieved by dietary broccoli consumption, offered benefits
against particulate pollution in human subjects, suggesting
that such treatment might be beneficial against asthma or
allergies.'®® Likewise, phytochemical components of garlic,
tomatoes, grapes, green tea, coffee, and berries have been
shown to have Nrf2 activating properties,'®* supporting the
possibility that dietary means of Nrf2 activation might be a
simple but effective strategy for prevention or treatment of
illnesses. 78183

Dietary supplements
An extensive amount of research has been done and
information gathered about phytochemical activation of
Nrf2, with dozens of plant-based activators identified and
studied.*176-178.186-192 Since the discovery of Nrf2 and its well-
ness potential in regulating cell survival genes and protecting
tissues against oxidative and other insults, and in light of the
phytochemical activation data, several nutritional supple-
ments have been developed to help consumers address health
and wellness issues by activating the Nrf2 pathway.*!35

Several dietary supplement companies have developed
specific mixtures for increasing antioxidant enzyme defenses
(some companies working in this space include New Chapter,
Inc, LifeVantage, Inc, Xymogen, and Nuley).**!* In each case,
a mixture of Nrf2-activating ingredients is blended together.
For some of the materials, studies were done to show activity
of the mixture, but in other cases reliance was simply made
on known properties of the individual ingredients. In at least
one case, Protandim (LifeVantage, Inc, Sandy, UT, USA), the
complete mixture has been extensively studied, not just the indi-
vidual ingredients.**8:191-200 Sty;dy of the combined ingredients
allowed demonstration of synergistic interaction between the
ingredients; each of which separately was previously known
to be a Nrf2 activator.'! Furthermore, as a branded product,
Protandim was shown to decrease oxidative stress in labora-
tory models in vivo, as well as in human subjects.'”® While
some dietary supplement products highlight the role of Nrf2
activation as part of their health and wellness benefit, others
(eg, Supercritical Antioxidants; New Chapter, Brattleboro, VT,
USA) indicate their antioxidant gene regulation activity without
specifying a role for the Nrf2 pathway. Perhaps not surprisingly
based on their ingredient profile and reported benefits, some of
these products likely also activate the Nrf2 pathway.

To demonstrate Nrf2 activation by two dietary supple-
ments, one marketed as a Nrf2 activator and the other
marketed as supportive of antioxidant enzymes, we examined

both using a promoter/reporter cell line responsive to Nrf2
activation. Briefly, this widely used assay is based on the
AREc32 cell line, developed and generously provided by
Dr C R Wolf and colleagues of the University of Dundee.”!
The AREc32 cell line is based on the MCF7 (Michigan Can-
cer Foundation-7) human breast cancer cell line, and is stably
transfected with a construct containing a promoter with eight
copies of the ARE from the rat glutathione-S-transferase-A2
gene, along with the SV40 (Simian virus 40) promoter
sequence upstream of a firefly luciferase reporter gene. As
shown in Figure 3, both of the tested dietary supplements
activated the Nrf2 pathway in the AREc32 cells. This type of
experimental approach can be utilized to make comparisons
and help define the mechanism for materials purported to
increase antioxidant and detoxifying enzymes.

Exercise

Recently, a relationship between exercise and Nrf2 activation
has been demonstrated.?***22% For example, activation of
Nrf2 was induced by acute exercise in a mouse model, and
exercise-induced oxidative stress was higher in Nrf2—/— mice

80,000 + -6~ Superecritical Antioxidants™
& u -H- Protandim®
g 60,000 F N
= I u
) ! \
= 40,000
- I
-% 1
3 20,000 -
14

T T
0 20 40 60

Concentration (ng/mL)

Figure 3 Luciferase activity versus concentration of two nutritional supplements.
Notes: Both of the tested nutritional supplements Protandim® (Lifevantage, Inc,
Sandy, UT, USA) — reported by the manufacturer to be an Nrf2 activator — and
Supercritical Antioxidants™ (New Chapter, Inc, Brattleboro, VT, USA), not
reported by the manufacturer to be an Nrf2 activator — upregulated the Nrf2-driven
luciferase reporter gene expression in the AREc32 cell line, depicted as relative
light units. Briefly, AREc32 cells were grown by standard methods, then trypsinized,
counted and seeded at 20,000 cells/well on 24-well plates. After 24 hours the cells
were reattached and growing, and were treated with varied concentrations of the
test material extracts in duplicate. Protandim® was obtained by BG as a gift from
Professor Joe McCord; Supercritical Antioxidants™ was obtained by retail purchase.
The agents were extracted overnight with 95% ethanol in 15 mL tubes on a rocking
table. The extract was obtained by centrifugation and then added to the wells in an
appropriate concentration range by dilution into phosphate buffer solution, with final
volumes added to culture wells ranging from | to 10 pL/well. An ethanol blank at the
highest 10 uL/well level was used as the zero control. The cells were incubated for
24 hours, then washed and lysed, after which the lysate was assayed for luciferase
activity by measuring luciferin-dependent chemiluminescence, reported as relative
light units for the contents of each well. Each assay was performed in duplicate.
Luciferase activity correlates directly in this case with Nrf2 activation.
Abbreviations: Nrf2, nuclear factor (erythroid-derived 2)-like 2; ARE, antioxidant
response element.
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due to lower expression of Nrf2-dependent antioxidant genes.?™
Notably, results from Gounder et al indicate that age-related
impairment of Nrf2 signaling and antioxidant enzyme pathways
may contribute to increased cardiovascular disease risk in the
elderly, but that this deficit was reversible in old mice subjected
to moderate physical exercise, restoring their heart Nrf2-depen-
dent antioxidants to near-normal, young mouse levels.?

Genes downregulated
by Nrf2 activation

One interesting concept that has not had very much coverage
in the literature is downregulation of gene expression by Nrf2
activation. Previous work by ourselves and others has shown
that Nrf2 activation upregulates the expression of hundreds of
genes, 240206207 byt another direct or indirect consequence of Nrf2
activation is the downregulation of a large number of genes.>*
In most cases, this downregulation is likely a consequence of
downstream effects of Nrf2 activation and its regulation of
genes that subsequently lead to downregulation of other genes,
but the possibility also exists that Nrf2 binding to some ARE
sequences of genes directly suppresses their transcription. For
example, in work by Jiang et al, a possible negative regulation of
TGFp1 (transforming growth factor beta 1) by Nrf2 activation
was observed, raising the question of whether Nrf2 negatively
regulates TGFP1 expression by direct binding to the promoter
region of its gene or by other, downstream effects.*® Further-
more, treatment of cultured mouse hepatoma cells with the Nrf2
activator diethyl maleate induced genes related to antioxidant,
detoxification, and other functions, but also repressed some
genes, including ones that contain Nrf2-MafG or Nrf2 binding
sites;® however, the mechanism of repression is not yet clear.
Identification of genes directly regulated by Nrf2 requires
both sequence verification of a suitably located ARE motif
and evidence of Nrf2 binding and transcriptional activation.
Accordingly, Chorley et al conducted ChIP-Seq experiments
in lymphoid cells treated with the known Nrf2-activator sul-
foraphane, and also carried out follow-up Illumina human
Ref-8 microarrays to assess Nrf2-mediated gene expression
in the six sequenced lines.?® They found 242 high confidence,
Nrf2-bound genomic regions and the expressions of 508 genes
changed by 1.3-fold or greater. Among genes with both ChIP-
Seq peaks and gene expression changes, there were significantly
more ChIP-Seq peak regions near upregulated genes (20.6%;
60/291) than downregulated genes (4.6%; 10/217; P<<0.0001,
Fisher’s exact test).?® Notably, none of the downregulated genes
displayed high-confidence ChIP-Seq peaks, suggesting that
the downregulation of these genes may be due to secondary,
downstream effects rather than direct effects of Nrf2 binding.

Fourtounis et al reported downregulation of Eotaxin-1/
CCL11 in human lung fibroblasts by small interfering RNA
(siRNA) to inhibit Keap1 and also by treatment with known
Nrf2 activators sulforaphane and CDDO.?* Briefly, they used
a custom Affymetrix Gene array to study gene expression
in normal human lung fibroblasts transfected with siRNA
specific for Nrf2 or Keap1, or treated with the small molecule
Nrf2 activators sulforaphane or CDDO. The key eosinophil
chemokine Eotaxin-1/CCL11 was found to be upregulated
when Nrf2 was inhibited and downregulated when Keap1 was
inhibited, whereas no effect had been found on the secretion
of a set of other chemokines and cytokines. Furthermore,
the known Nrf2 small molecule activators CDDO and sul-
phoraphane dose-dependently inhibited Eotaxin-1 release
from human lung fibroblasts. The mechanism for Eotaxin
regulation by Nrf2 is not known. For example, an ARE
motif was not found in the 5" region upstream of the human
Eotaxin-1 gene, suggesting that its downregulation by Nrf2
may be an indirect effect, possibly as a downstream effect of
NF-xB inhibition or other antiinflammatory signaling.?

Conclusion

The Nrf2 cell signaling pathway has been demonstrated
to contribute to the regulation of a wide variety of antioxi-
dant, detoxification, and cell survival genes. Under normal
conditions, Nrf2 activation plays a largely protective, ben-
eficial role, which has led researchers to examine ways in
which individuals might harness Nrf2 activation for health
benefits, including exercise, diet, dietary supplements, and
pharmaceuticals. However, in other instances Nrf2 inhibition
may be therapeutic. Efforts at laboratories around the world are
underway to develop new agents for either activation or inhibi-
tion of the Nrf2 pathway and to demonstrate their efficacy for
the treatment of degenerative and immunological disorders.
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