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Abstract

Background & aims: Excessive fructose intake associates with increased de novo
lipogenesis, blood triglycerides, and hepatic insulin resistance. Whether fructose-specific
effects on lipid metabolism in healthy men exist independently from overfeeding needs
clarification.

Methods: 94 subjects were studied in this double-blind, randomized trial. They were assigned
to daily consumption of sugar-sweetened beverages (SSB) containing moderate amounts of
fructose, sucrose (fructose-glucose disaccharide) or glucose (80g/day) in addition to their
usual diet or SSB abstinence (control group) for seven weeks. De novo fatty acid (FA) and
triglyceride (TAG) synthesis, lipolysis and plasma free FA (FFA) oxidation were assessed by
tracer methodology.

Results: Daily intake of beverages sweetened with free fructose and fructose combined with
glucose (sucrose) increased basal fractional secretion rates (FSR) of newly synthesized FA by
the liver 2-fold compared to control (median FSR %/day: sucrose 20.8 (p=0.0015); fructose
19.7 (p=0.013); control 9.1). Conversely, the same amounts of glucose did not change FSR
(median of FSR %/day 11.0 (ns)). Fructose intake did not change basal secretion of newly
synthesized VLDL-TAG. It did neither alter rates of peripheral lipolysis nor total FA and
plasma FFA oxidation. Total energy intake was similar across groups with SSB intake and
controls.

Conclusions: Regular consumption of both fructose and sucrose sweetened beverages in
moderate doses associated with stable caloric intake increases hepatic FA synthesis even in a
basal state, whereas this effect is not observed after consumption of glucose. These findings
support the hypothesis of an adaptative response of the liver to regular fructose exposure, i. e.
habitual SSB consumption.

Keywords: sugar, carbohydrate, liver, stable isotopes, lipid metabolism



Lay summary

This study investigated the metabolic effects of daily sugar-sweetened beverage consumption
for several weeks in healthy lean men. It revealed that beverages sweetened with the sugars
fructose and sucrose (glucose and fructose combined), but not glucose, increase the ability of
the liver to produce lipids. This change may pave the way for further unfavorable effects on

metabolic health.



Introduction

How dietary habits impact human health is a highly debated issue with increasing incidence
of obesity and associated diseases such as non-alcoholic fatty liver disease (NAFLD), type 2
diabetes and cardiovascular disease[l, 2]. Excessive energy intake from free sugars, and in
particular from increased fructose intake associates with obesity, metabolic syndrome and
NAFLDI3, 4]. Moreover, evidence exists that high-fructose intake increases hepatic de novo
lipogenesis and hepatic fat content and decreases hepatic insulin sensitivity independently
from weight gain[5]. Even consumption of SSB containing moderate amounts of fructose for
a few weeks changes the serum FA profile and induces hepatic insulin resistance[6, 7].
Differences between hepatic fructose and glucose metabolism and fructose-specific
mechanisms promoting metabolic disturbances are known[8]. Importantly, fructose-specific
effects result from the fact that the liver plays the major role in fructose clearance[9]. Fructose
consumption induces the hepatic master transcription factors regulating the expression of
lipogenic enzymes e. g. fatty acid synthase and acetyl-CoA carboxylase more effectively than
glucose[10-12]. Increased hepatic lipogenic capacity by upregulation of lipogenic gene
expression may be an important mechanism enhancing hexose disposal and supporting
metabolic homeostasis in response to the uptake of large carbohydrate (CHO) loads[13].
Furthermore, it may enhance lipogenesis from microbiota-derived acetate[14]. Increased
lipogenic capacity may not only be an acute cellular response in order to process large loads
of carbohydrates/lipogenic substrates, but be maintained by the liver for a prolonged period as
a general metabolic adaptation to a diet rich in CHO[15]. Thus, amounts of CHO and possibly
the type/composition of CHO of a diet modify substrate flux within the liver contributing to
lipid and glucose homeostasis.

Apart from being a lipogenic substrate and an inducer for lipogenic gene expression in the

liver, fructose may also affect other components of the FA metabolism such as peripheral



lipolysis and FA oxidation[7, 16]. It may promote ectopic fat deposition in the liver and
muscle associated with insulin resistance[17-19].

However, so far it is neither known whether moderate amounts of sugar sustainably increase
the flux of the FA synthesis pathway nor whether they dysregulate basal FFA delivery and
oxidation. In particular, it is not known whether fructose exerts divergent effects on hepatic
lipid metabolism when consumed alone or co-ingested with glucose i. e. as sucrose or high
fructose corn syrup (HFCS). This is of importance because most commercially available
sugar sweetened beverages are sweetened with HFCS (United States) or sucrose (Europe).

In this study, metabolic effects of moderate fructose, sucrose and glucose intake in a liquid
form as SSB were investigated. Thus, the aim was 1) to identify hexose specific metabolic
effects free from confounding factors i.e. CHO overfeeding or differences in the degree of
complexity or ways of presentation of sugars and 2) to investigate the effects of fructose
containing SSB possibly representing the most deleterious form of fructose administration
since associated with incomplete intestinal catabolism allowing a high proportion of fructose
passing to the liver [20]. First, we assessed whether a 6-week intervention with SSB
containing moderate, but biologically relevant amounts (80g/day) of free fructose, fructose in
combination with glucose (sucrose) or glucose or SSB abstinence differently affect hepatic
FA synthesis using the method of mass isotopomer distribution analysis (MIDA) (primary
outcome). It was postulated that highest effects on basal hepatic lipogenic activity would be
elicited by free fructose containing SSB, whereas intermediate effects would be noted by
sucrose containing SSB, and little effects after glucose SSB consumption. Secondly, effects
on systemic FA flux were investigated measuring lipolysis and plasma FFA oxidation by
stable isotope infusions (after 5-weeks SSB interventions). Thirdly, we assessed effects of

SSB intake on macronutrient and caloric intake and on anthropometry.



Materials&Methods

Subjects and intervention

126 healthy male volunteers (age 18-30 years) with BMI>24kg/m” were recruited to be
studied in this double-blind, randomized trial in the years 2013-2016. Study participation was
limited to only one gender (male subjects) as there is evidence for divergent metabolic effects
of fructose on male and female subjects. Furthermore, a body mass cut-off was defined to
exclude subjects with a possibly increased liver fat content[21, 22]. Subject’s eligibility was
assessed by examination including medical history and blood biochemistry. Subjects with
high SSB consumption (exceeding CHO 60g/day) or more than 3 hours of physical activity
per week were excluded from the study.

Sample size (n=24 per group) was calculated based on previous studies showing changes in
fractional de novo lipogenesis after fructose exposure[23]. Subjects were randomly assigned
to one out of four dietary intervention groups by the Cantonal Pharmacy of Zurich (simple
random allocation) and supplied with SSB (80g sugar/day) containing fructose, sucrose or
glucose or abstained from SSB consumption (control) (Molkerei Biedermann AG,
Bischofszell (provided SSB in coded containers), Swiss technology testing service, Dietikon
(quality control)). As non-caloric sweeteners potentially affect human metabolism (e.g.
appetite control, weight, microbiome composition), the present study did not use a placebo in
the control group[24, 25]. The study (NCT01733563) was approved by the ethical committee
(Canton Zurich, Switzerland). Informed consent was obtained from all subjects and all

procedures were performed in compliance with the guidelines of the Declaration of Helsinki.

Sudy design
After 4-week SSB abstinence, subjects started a 7-week intervention with consumption of

three times/day 2dL. SSB containing 13.3g/dL of either fructose, sucrose or glucose with their



regular meals or continued SSB abstinence. At baseline and at the end of the study period
(week 7), an oral glucose tolerance test (OGTT) was performed (Accu-Chek Dextrose O.G-
T., Roche Pharma AG, 75g). At week 5 and 6, respectively, tracer based metabolic
measurements were performed to assess plasma FFA oxidation (week 5), FA and triglyceride
(TAG) synthesis (week 6) and lipolysis (week 5 and 6) (Supplemental Figure 1 and Figure 1).
The days before examinations subjects abstained from strenuous physical activity.
Examination started after a 12-hour overnight fast at the Clinical Trial Unit (University
Hospital Zurich).

To assess compliance, subjects had to return empty SSB containers and not consumed SSB
and to keep SSB records. To evaluate the impact of SSB on their dietary pattern, subjects had
to keep 3-day food records before each examination day. Food records were analyzed using a
software (EBISpro, University of Hohenheim, Hohenheim, Germany). Laboratory and

anthropometric parameters were measured at each examination.

Metabolites and hormones

Blood glucose was measured from whole blood samples (BIOSEN C-line, EKF Diagnostic,
Germany). Kits used in this study are indicated in the supplemental material. TAG,
cholesterol and FFA were measured enzymatically in fresh serum. From frozen serum C-
peptide was measured using IRMA, insulin using RIA and leptin using ELISA. Insulin
sensitivity/beta cell function and adipose tissue resistance was calculated as described

previously[26, 27].

Anthropometry
Weight was determined using a digital balance accurate to 0.1kg, and height was measured

using a wall-mounted stadiometer. BMI was calculated as weight kg/height(m)2. Waist and



hip circumference were determined using a measuring tape. Body fat percentage was
measured by bioelectrical impedance (AKERN BIA 101, Pontassieve, Italy). Blood pressure

was measured using an automated device (Omron M6).

Metabolic studies

During examinations, subjects remained at rest with an indwelling catheter placed in an
antecubital vein for tracer infusion, and a sampling catheter inserted in a vein of the
contralateral arm. All infusates were prepared by the Cantonal Pharmacy of Zurich with
tracers from Cambridge Isotope Laboratory, Inc. Arterialized blood was obtained applying
heated hand technique[28]. Baseline blood and breath samples were drawn to measure natural

13C/2H enrichments.

Measurement of peripheral lipolysis and plasma FFA and total fat oxidation (week 5)
Lipolysis represented as the rate of appearance (Ra) of glycerol was assessed by
[2HS]glycerol  infusion and regular measurements of plasma [2HS5]glycerol
enrichment[29].The tracer infusion protocols and blood samplings are indicated in Figure 1A.
Glycerol derivatization/MS-analysis and calculations are described in the supplemental
material.

Plasma FFA oxidation was assessed by [U-13C]palmitate/albumin infusion and measurement
of breath 13CO2 enrichment and indirect calorimetry (Figure 1A) (Ergostik, Geratherm
Respiratory GmbH, Germany). MS-analysis and calculations are described in the

supplemental material.

Measurement of FA, VLDL-TAG synthesis/secretion and lipolysis (week 6)



Basal secretion of newly synthesized VLDL palmitate was assessed by [1,2-13C]Jacetate and
glucose infusion and palmitate isotopomer distribution analysis (Figure 1B). Sample
preparation/derivatization and calculations are described in the supplemental material.

Simultaneously, secretion of newly synthesized VLDL-TAG and lipolysis were assessed by
primed constant [2HS]glycerol infusion (Figure 1B). [2HS5]glycerol enrichment in VLDL-
TAG was measured to assess TAG synthesis/secretion. Plasma [2H5]glycerol enrichment was
measured to assess Ra of glycerol/ lipolysis [30]. Sample analysis/derivatization and

calculations are described in the supplemental material.

sdLDL analysis
LDL size and subclasses were determined in frozen samples. For analysis of LDL size and
subclasses, nondenaturing polyacrylamide gradient gel electrophoresis of plasma was

performed and analyzed as described elsewhere[31].

Statistics

Data were tested for normal distribution and presented accordingly as means + standard
deviations or as medians with interquartile ranges. SSB groups and the control group were
compared by ANOVA testing (parametric data) or Kruskal-Wallis test (nonparametric data).
When means or medians were significantly different between groups, appropriate post hoc
tests were made either with Tukey’s or Dunn’s multiple comparison’s test or Mann-Whitney
tests. In general, 2-tailed tests were performed. Only when one-sided hypotheses were
explicitly formulated in advance, 1-tailed tests were performed. Paired t-test (parametric data)
or Wilcoxon test (nonparametric data) were applied to compare parameters within one group

(baseline vs after intervention). The significance level was set p<0.05 and was adjusted for
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multiple comparisons by Bonferroni correction. Statistics were performed using GraphPad

PRISM (Version 7.04) / IBM SSPS (Version 25).
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Results

126 subjects were randomized to four different intervention groups, with either daily
consumption of fructose-, sucrose- or glucose-sweetened beverages (80g sugar/day), or SSB
abstinence (Control n=31, glucose n=32, fructose n=32, sucrose n=31). Subjects that
completed the study (Control n=24, glucose n=24, fructose=23, sucrose=23) were included in
the analysis. Data from 22-24 subjects per group could be analyzed, numbers of analyzed
subjects are indicated in figures and tables. The data from the remaining 1-3 subjects per
group could not be completely collected during the study visits for technical reasons or
incompliance with the study protocol. At baseline, the subjects were on average 22.7+2.4
years old. Their mean body weight was 71.54+7.7 kg and their body mass index was normal

(21.8+1.6 kg/m?).

Caloric intake and composition of diet

Total energy intake did not differ significantly between baseline and after SSB interventions
(week 7) in any of the groups (Supplemental Table 1). Macronutrient composition varied
according to the dietary intervention: SSB consumption significantly increased % caloric
intake from carbohydrates. Absolute sugar intake (g/day) was increased according to the
assigned interventions. SSB consumption decreased partially sugar intake from fruits (i. e.
fructose and sucrose group). Percentage of caloric intake from complex carbohydrates was
significantly reduced during the fructose and sucrose SSB interventions. Percent caloric
intake from protein was significantly lowered in all SSB groups. Similarly, % caloric intake
from fat was significantly lowered in the groups consuming SSB containing fructose or
glucose, and tended to be decreased in the sucrose group. SSB consumption increased

absolute total carbohydrate intake and partially decreased the absolute intake of other

12



macronutrients (i.e. decreased fat intake in the glucose group and decreased protein intake in

the sucrose group).

Anthropometry

The average body weight and percentage of body fat tended to increase during the SSB
interventions in all groups (Table 1). However, this increase was only significant for the
glucose SSB intervention (week 7 72.4+6.6 kg vs baseline 71.6+6.8 kg, p=0.009; 23.8+4.8 %

body fat vs baseline 20.5+5.4 % body fat, p=0.007).

Vital parameters and laboratory parameters, glucose tolerance

Relevant vital and laboratory parameters are summarized in Table 1 and Supplemental Table
2. Systolic and diastolic blood pressure slightly decreased during the study in all groups.
Neither fasting plasma TAG, glucose and insulin concentrations nor overall insulin (HOMA-
IR) and adipose tissue insulin sensitivity (Adipo-IR) changed throughout the study.
Furthermore, glucose tolerance assessed by an oral glucose tolerance test (75g glucose) was
not changed by the dietary interventions. Fasting leptin concentrations significantly increased
in the sucrose (p=0.019) and glucose (p=0.033) group, but not in the fructose group (p=
0.291).

Concentrations, pool sizes, and distributions (% of VLDL bound TAG of plasma TAG) of
plasma triglycerides and palmitate pool sizes after 6-weeks dietary interventions are
summarized in Supplemental Table 3 (fasting state). There were no significant differences
between the dietary intervention groups. Fatty acid profiles of VLDL-TAGs are presented in
Supplemental Table 4 (fasting state). Overall, SSB interventions did not change FA profiles.

There was only a significant decrease in oleic acid (C18:1n9) in fructose group compared to

13



the control group (p=0.038). Accordingly, the saturation index C18:1n9/C18:0 was decreased

in the fructose group compared to the control group (p=0.030).

Synthesis and secretion of VLDL-bound palmitate and VLDL-TAG (week 6)

We measured basal hepatic fractional and absolute secretion rates of newly synthesized
VLDL-palmitate to assess the activity of the FA synthesis pathway during infusion of
2mg/kg/min glucose providing lipogenic substrate. Palmitate accounting for 75-85% of all
newly synthesized FA by the liver represents a suitable proxy for newly synthesized FA [30].
The fractional secretion rate (FSR, defined as the fraction of the plasma VLDL-palmitate pool
that is newly synthesized per unit of time) in the basal state was higher after both fructose and
sucrose SSB interventions than after the glucose SSB intervention and control. Consumption
of beverages containing fructose resulted in 2-fold increased basal FSR of newly synthesized
FA compared to control (median FSR %/day: sucrose 20.8 (p=0.0015); fructose 19.7
(p=0.013); control 9.1) (Figure 2

A). In contrast, the same amounts of glucose did not change FSR (median of FSR %/day 11.0
p=0.16).

Similarly, absolute secretion rates of newly synthesized VLDL-palmitate, calculable from
FSR and the VLDL-palmitate pool size, tended to be increased by the fructose intervention
(p=0.055) and were significantly increased by the sucrose SSB intervention (p= 0.008)
compared to control in the basal state (Supplemental Table 5). The total rate of secretion of
VLDL-palmitate (de novo synthesized and preformed palmitate) also tended to be higher after
the fructose and sucrose SSB interventions compared to control in the basal state, although
this was below statistical significance. Parameters for calculation of the FSR of newly

synthesized VLDL-palmitate are summarized in Supplemental Table 5.
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For hepatic TAG synthesis and secretion, FA uptake from the plasma is of importance[32].
Thus, peripheral lipolysis, a source of FA for hepatic TAG synthesis, was also measured. SSB
consumption did not impact basal peripheral lipolysis (Supplemental Table 6).

We also measured basal fractional and absolute secretion rates of newly synthesized VLDL-
TAG with incorporated plasma glycerol. There were no differences of fractional or absolute
rates of secretion of these VLDL-TAG between groups consuming SSB during 6 weeks and

control (Figure 2B and supplemental table 6).

Whole-body fuel use (week 5)

Resting energy expenditure (REE), total fat and CHO oxidation as well as non-protein
respiratory quotient (NPRQ) were measured after 5 weeks of SSB interventions by indirect
calorimetry. There were no differences regarding REE, total fat and CHO oxidation as well as
NPRQ between the groups (Supplemental Table 6). Energy expenditure ranged from
0.01940.004 kcal/kg per min to 0.023+0.013/kg per min in the different groups. In the fasted
state, total fat oxidation varied from 1.43+0.69 to 1.59+0.83 mg/kg per min and CHO
oxidation from 0.78+0.77 to 1.20+0.88 mg/kg per min.

Figure 3 shows the analysis of different components of FA-metabolism. The basal rate of R,
glycerol reflecting lipolysis did not differ between the intervention groups (Figure 3A).
Neither basal rates of plasma FFA oxidation nor total FA oxidation differed between the
groups (Figure 3B,C). The percentage of infused U-13C-palmitate oxidized was not

significantly different between the intervention groups (Figure 3D).

sdLDL
Large, buoyant LDL particles (subgroups I and Ila) tended to decrease at 7 weeks after all
SSB interventions (Supplemental Table 7); this decrease was significant in the sucrose

intervention group, with a decrease of large LDL particles (subgroup I) by >13% (p=0.012).
15



Similarly, small, dense LDL particles tended to increase after all interventions. The increase

was significant in the sucrose group (LDL particles of subgroup Illa, p=0.031).
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Discussion:

This study demonstrates that daily consumption of beverages containing moderate amounts
(comparable to those provided by commercial soft drinks/fruit juices) of either fructose or
sucrose, but not glucose increases hepatic FA synthesis in healthy men in a basal state. SSB
consumption (with ad libitum meals) influenced absolute macronutrient intake (i.e. decreased
fat and protein intake) and did not increase total energy intake. Measurements of FA synthesis
applying the MIDA approach revealed that consumption of fructose or the fructose-glucose-
disaccharide sucrose (3 times 2dl SSB containing 13.3g sugar/dl) increased the FSR of newly
synthesized palmitate even at a basal state, possibly reflecting a persisting reinforced
lipogenic gene expression. This “metabolic switch” occurring in hepatocytes may enable them
to quickly respond to recurrent fructose loads with an increased lipogenic capacity, but may
also enhance lipogenesis fed by short chain fatty acids produced by bacterial fermentation i.e.
acetate [14] . Contrasting with our hypothesis, fructose and sucrose likewise increase the FSR.
This may result from facilitating effects of glucose ingestion important for the induction of
lipogenic gene expression. Firstly, glucose strongly enhances intestinal fructose uptake and
secondly, insulin is required for the maximal induction of SREBPIc and lipogenic gene
expression[33, 34]. Moreover, fructose stimulates hepatic glucose uptake through glucokinase
activation possibly enhancing glucose flux towards the liver and increasing abundance of
glycolytic intermediates and lipogenic substrate [35, 36]. This is in line with the notion that
the monosaccharide composition determines the extent of “monosaccharide flooding” of the
liver and thus is a key determinant of lipogenic gene expression and therefore hepatic
lipogenic activity.

Enhanced lipogenesis after both fructose and sucrose ingestion is seemingly contrary to our
previous observation of an increased relative abundance of plasma palmitate only after daily
consumption of SSBs containing fructose but not sucrose[7]. However, the MIDA approach

17



used in this study assesses the basal de novo FA synthesis whereas measurement of plasma
palmitate reflects hepatic FA synthesis integrating postprandial and fasting states. The
reported increased ratio of palmitic to linoleic acid after prolonged daily fructose consumption
may therefore mainly reflect the importance of fructose as a lipogenic substrate. VLDL-TAG
secretion was not increased at the basal state in this study, consistent with unchanged/normal
fasting TAG levels after the dietary intervention. Nevertheless, a fructose-induced enhanced
lipogenic activity may increase postprandial hepatic FA/TAG production and fat content[37]
and contribute to postprandial hypertriglyceridemia after consumption of high-fructose loads
(e.g. SSB). This may not be primarily due to accumulating newly synthesized FA after
fructose intake feeding the TAG synthesis pathway, but rather due to concomitant
downregulation of FA oxidation of preformed FA entering the liver and promoting re-
esterification [36]. Thus preformed and newly synthesized FA as well copious glycerol from
fructolysis may promote re-esterification and VLDL production[32, 38]. The effect of
fructose consumption on hepatic fat content was not examined in this study. A recent study by
Smajis et al. in healthy men demonstrated that a daily consumption of 150 g fructose over 8
weeks did not result in a net fat retention in the liver[39]. However, the authors did not
specify whether fructose was consumed in liquid form or solid food rendering it difficult to
compare the two studies. Thus, it remains an open question whether fructose in the form of
SSB with fast fructose absorption and significant overflow to the liver increases hepatic fat
content in the long term when possible compensatory mechanisms such as increased VLDL-
TAG secretion may be exhausted beyond the limits. Nevertheless, our data demonstrates that
fructose consumed as SSB is a potent stimulator of de novo lipogenesis (DNL) which is
recognized per se as a risk factor for NAFLD and diabetes[40, 41]. An increased hepatic
lipogenic activity and a concurrently increased intestinal fructose absorption and hepatic

clearance capacity may increase the susceptibility to liver-related pathologies[42]. Moreover,
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a recent study demonstrated that acetate generated by microbial fermentation of fructose also
feeds hepatic lipogenesis pointing out possible interactions between fructose and dietary
sources of acetate such as ethanol and fermentable fibers[14].

VLDL-TAG synthesis and secretion is also determined by the FA flux towards the liver[32].
Accordingly, we measured rates of peripheral lipolysis during the measurement of FA
synthesis, when substrate for FA synthesis was provided by a glucose infusion inducing an
insulin response. Rates of peripheral lipolysis did not differ between the groups indicating that
SSB consumption during several weeks does not induce adipose tissue insulin resistance. This
is in contrast to a study reporting impaired insulin-induced suppression of adipose tissue
lipolysis already after 6 days of high-fructose overfeeding (3g/kg of body weight fructose
provided as 20% fructose solutions)[23]. Notably, our study investigated the metabolic effects
of SSB consumption close to a real life setting instead of sugar overfeeding.

Impaired FA utilization may play a role in the etiology of skeletal muscle and hepatic insulin
resistance [43]. We measured plasma FFA oxidation to assess whether regular SSB
consumption is a primary factor that decreases basal FA oxidation. Plasma FFA oxidation was
not impaired by moderate SSB consumption. Replacement of lipid energy substrate in the
skeletal muscle by metabolites generated from fructose i.e. lactate or glucose may spare lipids
from oxidation and increase intramuscular fat content, which is supposed to decrease
muscular FFA uptake and oxidation[43, 44]. A decreased FFA utilization by the skeletal
muscle is supposed to increase FFA flux to the liver which could in combination with an
impaired hepatic FA oxidation due to regular fructose consumption promote hepatic fat
deposition and insulin resistance[16, 43].

Diet composition impacts whole body fuel selection. Lipolysis as well as the proportion of
released FA oxidized correlate inversely with CHO intake[45]. 5 days high-CHO overfeeding

(type of CHO not specified) impacts whole body fuel selection even at an overnight fasted
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state in healthy men. It induces an insulin resistant state with increased hepatic glucose
production and oxidation despite of increased serum insulin concentrations[45]. To test
whether daily SSB consumption increases carbohydrate oxidation in the fasted state we
measured CHO and total fat oxidation rates by indirect calorimetry. Unlike subjects overfed
with carbohydrates for 5 days, subjects with prolonged moderate intakes of SSB containing
fructose, sucrose or glucose for several weeks did not show increased fasting CHO
oxidation[45].

Not only fat deposition per se but also fat distribution, independently of obesity, is of
particular importance for the development of type 2 diabetes[46]. However, determination of
subcutaneous, intramuscular or hepatic fat deposition was beyond the scope of this study.
Overall SSB interventions tended to increase body weight and fat. It might be hypothesized
that the significant increase of % body fat and fasting leptin concentrations after the glucose
intervention were caused by an increase of mainly subcutaneous adipose tissue, which was
observed to produce higher leptin amounts than visceral fat.[47].

This study confirmed that SSB consumption containing fructose changes LDL composition as
described previously[48]. In the intervention group with added sucrose, there was a
significant change of the LDL particle distribution towards smaller, more atherogenic
particles associated with cardiovascular disease[49].

To our knowledge, this is the first study that applied tracer-based methodology to quantify
metabolic changes induced by interventions with SSBs with moderate fructose, sucrose or
glucose content with the habitual diet and thus provides findings most relevant for our
everyday life. The finding that regular consumption of fructose containing beverages
increases hepatic basal lipogenic activity is well in accordance with mechanistic animal
studies that showed that fructose and sucrose are more potent inducers of lipogenic gene

expression than glucose[10].
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This study bears some limitations. Inherent problems of this type of study remain i) little
control for compliance to the protocol of individual subjects and ii) unknown intestinal
capacities (fructose tolerability) of the subjects to take up fructose. Accordingly, intersubject
variability may reflect individual compliance and differences in the intestinal fructose uptake.
Though a valuable tool for tracing in vivo kinetics of human metabolism, tracer based
methodology provides only estimations of kinetics as it is based on various assumptions and
possibly simplifications and mathematical models. Thus, in the present study the use of 13C-
acetate as tracer and MIDA may have led to an underestimation of de novo fatty acid
synthesis [50]. We measured the synthesis and secretion of VLDL-TAG formed from plasma
glycerol which represents a fraction of total VLDL-TAG. The contribution of VLDL-TAG
with glycerol originating from the glyceroneogenic or glycolytic pathway has not been

assessed in the study [51].

Conclusions:

In summary, our study provides evidence that daily consumed fructose-containing beverages
induce profound alterations in the hepatic lipid metabolism manifested as an increased basal
lipogenic capacity (increased FSR of newly synthesized FA). Very interestingly, pure fructose
(80g fructose/day) and sucrose (40g fructose plus 40g glucose/day) increased basal hepatic
FA synthesis comparably. Other features of the metabolic syndrome, i.e. fasting
hypertriglyceridemia, hyperglycemia, hyperinsulinemia, peripheral/adipose tissue insulin
resistance were not observed in this study of seven weeks duration. This indicates that an
increased basal hepatic FA synthesis is probably the first metabolic change induced by regular
SSB consumption containing fructose. We hypothesize that this switch of the liver
metabolism by fructose intake towards a higher lipogenic activity may pave the way to further

changes affecting metabolic health.
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Table 1. Anthropometric and vital parameters

Control Glucose Fructose Sucrose

n 24 22 23 23

Baseline Week 7 Baseline Week 7 Baseline Week 7 Baseline Week 7
Weightl(kg) 70.4+8.1 70.6£8.0 | 71.6+6.8 72.4+6.6% | 69.2+7.7 | 69.5+7.4 75.5+7.3 76.00+7.0
BMI(kg/m°)* | 21.02.8) | 21.3(1.8) [ 22.02.3) |[2242.6)* |21.223) |21.52.4)* | 22.9(1.4)% | 22.9(2.0)°
WHR! 0.88+0.03 | 0.89+0.04 | 0.85+0.04% | 0.85+0.04 | 0.87+0.05 | 0.87+0.04 | 0.87+0.04 | 0.88+0.06
Body fat(%)" | 21.0+5.5 21.9+4.2 | 20.5+5.4 23.8+4.8" [ 205455 | 21.745.1 21.4+6.8 22.5+4.7
Muscle(%)’ 56.7+5.1 53.6+3.7% | 56.6+4.9 54.0+3.9% | 56.3+4.2 | 55.3+5.1 | 555454 | 55.1+4.3
Systolic 127.0£10.7 | 122.949.3 | 125.749.0 | 125.6*11.3 | 122.6+8.8 | 121.5+ 126.2+7.2 | 123.1+9.2
blood
pressure 6.5
(mm Hg)'
Diastolic 69.7+10.1 66.1+8.5 | 71.6+8.6 66.7£9.55 | 67.3£11.8 | 65.2+8.7 67.248.1 63.8+6.5"
blood
pressure
(mm Hg) !

' Arithmetic means+SDs
*Medians (Interquartile range)
ASignificant differences between baseline and after 7-weeks SSB interventions (p< 0.05)
(Paired t-test or Wilcoxon)
BSignificant differences between SSB intervention groups and control at baseline (p< 0.05)
(ANOVA with Tukey’s multiple comparisons test or Kruskal-Wallis with Dunn’s multiple
comparison’s test).
CSignificant differences between groups after 7-weeks SSB interventions (p< 0.05) (ANOVA
with Tukey’s multiple comparisons test or Kruskal-Wallis with Dunn’s multiple comparison’s

test).
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Table 2: Indirect calorimetry (Week 5), fasting condition

Control Glucose Fructose Sucrose
n 23 24 23 22
REE (kcal/kg/min) 0.0229+0.0130 0.02102+0.0046 0.0194+0.0038 0.0195+0.0029
NPRQ 0.7620.09 0.760.10 0.7420.08 0.7620.08
Fat oxidation 1.45+0.60 1.59+0.83 1.56+0.64 1.43+0.69
(mg/kg/min)
CHO oxidation 1.20+0.88 1.13+1.43 0.78+0.77 1.10£1.00
(mg/kg/min)

Arithmetic means+SD
No significant differences between SSB interventions and control (ANOVA)
REE-=resting energy expenditure; NPRQ=non-protein respiratory quotient
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Fig. 1: Tracer examinations. (A) Day 1 for determination of the acetate recovery factor; day
3 for measurement of fat oxidation and lipolysis at week 5 (B) Measurement of FA synthesis,

VLDL-TAG kinetics and lipolysis at week 6.

Fig. 2. Fractional secretion rates (FSR) of newly synthesized palmitate and newly
synthesized VLDL-TAG containing plasma glycerol after 6-week SSB interventions. (A)
FSR of newly synthesized palmitate are significantly increased in the fructose and sucrose
group compared to the control group (fructose p=0.013; sucrose p=0.0015; glucose p=0.16).
Fructose n= 23; Glucose n=23; Sucrose n=23; Control n=23. (B) FSR of newly synthesized
TAG are not significantly different between the SSB groups and control. Fructose n=23;
Glucose n=23; Sucrose n=22; Control n=21. Kruskal-Wallis test for comparison of SSB
intervention groups vs control, Mann-Whitney test (one-tailed) for comparison of fructose vs

control and sucrose vs control. Significance level P=0.017 (Bonferroni corrected)).

Fig. 3. Lipolysis, percentage infused U-13C-palmitate oxidized, oxidation of plasma FFA
and total FA after 5-weeks SSB interventions. (A) Rate of appearance of glycerol
representing lipolysis. No significant differences between the groups. Fructose n= 23;
Glucose n= 24; Sucrose n= 23; Control n= 23. (B) Percentage of infused tracer oxidized. No
significant differences between the groups. Fructose n= 23; Glucose n= 24; Sucrose n= 23;
Control n=23. (C) Oxidation rates of plasma FFA. No significant differences between the
groups. Fructose n= 22; Glucose n=24; Sucrose n=23; Control n=23. (D) Total FA oxidation.
No significant differences between the groups. Fructose n=22; Glucose n=24; Sucrose n=24;

Control n=23. Kruskal-Wallis test for comparison of SSB intervention groups vs control.
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Figure 1
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Figure 2
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Figure 3
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Highlights

* It is debated whether fructose drives the metabolic syndrome or non-alcoholic fatty
liver disease

* Fructose in a liquid form as sugar sweetened beverages may impact liver metabolism

* Result: consumption of beverages containing fructose or sucrose increase hepatic
lipogenesis

* Increased hepatic lipogenic activity may promote long term metabolic perturbations



