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Dementia is a major threat to our aging population. 
Besides destroying life quality of affected patients, 

it affects immediate family, turning spouses or children 
into caregivers and often straining family finances. Al-
zheimer disease (AD) accounts for most dementia cases,1 
with contributions from dementia with Lewy bodies, vas-
cular disease, frontotemporal degeneration syndromes, 
and various other less common disorders. Less devas-
tating but also disrupting life quality is mild cognitive 
impairment (MCI), documented in more than 10% of 
seniors older than 70 years, with more than 20% affected 
after the age of 80 years.2 Often MCI is a prelude to sub-
sequent dementia.3

Physical Exercise as a Preventive or Disease-Modifying Treatment of 
Dementia and Brain Aging 
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A rapidly growing literature strongly suggests that exercise, spe-

cifically aerobic exercise, may attenuate cognitive impairment 

and reduce dementia risk. We used PubMed (keywords exercise 

and cognition) and manuscript bibliographies to examine the pub-

lished evidence of a cognitive neuroprotective effect of exercise. 

Meta-analyses of prospective studies documented a significantly 

reduced risk of dementia associated with midlife exercise; similar-

ly, midlife exercise significantly reduced later risks of mild cogni-

tive impairment in several studies. Among patients with dementia 

or mild cognitive impairment, randomized controlled trials (RCTs) 

documented better cognitive scores after 6 to 12 months of exer-

cise compared with sedentary controls. Meta-analyses of RCTs of 

aerobic exercise in healthy adults were also associated with sig-

nificantly improved cognitive scores. One year of aerobic exercise 

in a large RCT of seniors was associated with significantly larger 

hippocampal volumes and better spatial memory; other RCTs in 

seniors documented attenuation of age-related gray matter vol-

ume loss with aerobic exercise. Cross-sectional studies similarly 

reported significantly larger hippocampal or gray matter volumes 

among physically fit seniors compared with unfit seniors. Brain 

cognitive networks studied with functional magnetic resonance 

imaging display improved connectivity after 6 to 12 months of 

exercise. Animal studies indicate that exercise facilitates neuro-

plasticity via a variety of biomechanisms, with improved learning 

outcomes. Induction of brain neurotrophic factors by exercise has 

been confirmed in multiple animal studies, with indirect evidence 

for this process in humans. Besides a brain neuroprotective ef-

fect, physical exercise may also attenuate cognitive decline via 

mitigation of cerebrovascular risk, including the contribution of 

small vessel disease to dementia. Exercise should not be over-

looked as an important therapeutic strategy.
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AD = Alzheimer disease; BDNF = brain-derived neurotrophic factor; 

fMRI = functional brain magnetic resonance imaging; IGF-1 = insulin-

like growth factor 1; MCI = mild cognitive impairment; MRI = magnetic 

resonance imaging; RCT = randomized controlled trial; V·O
2
 = oxygen 

consumption per unit time

 Notable also is the subtle loss of cognitive skills often 
accompanying normal aging. Seniors frequently experi-
ence reduced memory for names and telephone numbers. 
Whether the substrate is the progressive loss of gray mat-
ter routinely seen with brain magnetic resonance imaging 
(MRI) of seniors is debatable; indeed, normal brain aging 
is accompanied by loss of synaptic connections and attenu-
ated neuropil.4,5

 The neurodegenerative dementias are presumed to be 
proteinopathies, characterized by aggregation of a specific 
protein within the brain, such as β-amyloid and microtu-
bule-associated protein tau in AD or α-synuclein in demen-
tia with Lewy bodies. Despite intensive research directed 
at these and other neurodegenerative diseases, no drug ef-
fectively targets the pathogenic substrates. No medication 
has been proven to reduce the subsequent risk of dementia 
or age-related cognitive impairment.

REGULAR EXERCISE AS  

NEUROPROTECTIVE THERAPY

Although medications have no proven neuroprotective effect 
on dementia, an evolving literature documents significant 
benefit of long-term, regular exercise on cognition, dementia 
risk, and perhaps dementia progression. These studies sug-
gest an attenuating effect on brain aging and resilience to 
dementing neurodegenerative mechanisms.
 Exercise also favors brain health via the well-known 
attenuating influences on atherosclerotic cerebrovascu-
lar disease. Thus, primary vascular dementia is common 
and, moreover, cerebrovascular small vessel disease (eg, 
leukoaraiosis and lacunar disease) appears additive with 
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neurodegenerative processes to cause dementia.6 These 
atherosclerotic cerebrovascular mechanisms are distinc-
tive from neurodegeneration and age-related loss of neu-
ropil and synapses. Because the benefit of exercise on 
atherosclerotic (cerebrovascular) risk seems well estab-
lished, this contribution to the subject will not be a focus 
of this article.
 Our focus is on the scientific basis for advocating regu-
lar exercise as a prophylactic and perhaps disease-slowing 
treatment of neurodegenerative and age-related dementia 
and MCI. Although certain studies in humans make it dif-
ficult to separate vascular contributions, the literature in 
the aggregate suggests that exercise may have more direct 
favorable effects on brain neuroplasticity and resilience to 
brain aging and neurodegeneration.
 A recent National Institutes of Health State-of-the-
Science Statement took a nihilistic view of exercise as a 
disease-modifying influence on cognition or dementing ill-
ness.7,8 However, as pointed out in a subsequent critique 
of this statement, the conclusions were based on a narrow 
scope of data.9

 We present evidence that argues for the benefit of 
exercise on cognition and the forestalling of later-life 
cognitive decline. In contrast to the recent National In-
stitutes of Health consensus statement,7,8 we considered 
a broad expanse of both animal and human studies rel-
evant to this topic. In an attempt to capture the relevant 
literature, we reviewed all publications identified by a 
PubMed search using the keyword  cross-ref-
erenced with  (identifying 1603 publications, 
without date limitations) and identified additional rel-
evant articles via review of bibliographies from these 
and other publications.

DEFINING REGULAR EXERCISE

The literature on this subject, including animal studies, im-
plies that potential benefits accrue with long-term, regular 
exercise. The exercise parameters cannot be precisely de-
fined, but the connotation is aerobic physical exercise that is 
sufficient to increase the heart rate and the need for oxygen. 
Presumably, this must be sustained (eg, for at least 20-30 
minutes per session) and ongoing. Ultimately, this trans-
lates into what physiologists characterize as cardiovascular 
fitness, objectively assessed with measurement of oxygen 
uptake during peak exercise (such as on a treadmill); this is 
reported as peak oxygen consumption per unit time (V·o

2
), 

with higher values indicative of better fitness.
 Limited studies have also specifically addressed re-
sistance exercise (effort against weighting or resistance) 
and cognition; however, this literature is currently in-
sufficient to draw conclusions. Hence, we primarily fo-

cus on aerobic-type exercise that potentially leads to 
physical fitness.

EXERCISE MODALITIES

Although other medical conditions may limit the extent of 
exercise, modalities should be available for all people, except 
perhaps those with major cardiopulmonary disease or major 
organ failure. There is a wide variety of such aerobic exer-
cise options, including walking, gym or health club routines, 
driveway basketball, and home activities, such as shoveling 
snow, raking leaves, or other yard work. Impaired ambula-
tion does not preclude certain sitting exercises, such as use of 
rowing machines, exercise bicycles, or other gym machines.

IMPROVEMENT IN COGNITIVE SCORES  

IN HEALTHY ADULTS

Recent meta-analyses of 29 randomized controlled trials 
(RCTs) documented significant cognitive benefits from sus-
tained exercise in adults without dementia (although 3 of the 
29 trials enrolled patients with MCI).10 Significantly improved 
scores were noted in memory, attention, processing speed, and 
executive function, albeit with only modest improvement. Be-
cause the benefits accrued during 1 to 12 months of exercise 
(except for one 18-month trial), these findings are less easily 
explained by the secondary influence of exercise on cerebro-
vascular disease (eg, leukoaraiosis, lacune, or stroke risk).

FUNCTIONAL MRI COGNITIVE NETWORKS  

IN HEALTHY SENIORS

Functional brain MRI (fMRI) during cognitive tasks has 
also documented significantly improved cognitive net-
works with exercise or fitness. In one 6-month RCT among 
seniors, aerobic exercise translated into significantly im-
proved cortical connectivity and activation, compared with 
controls.11 In a 12-month RCT, aerobic exercise likewise 
improved cognitive fMRI network connectivity; however, 
the control group undergoing nonaerobic stretching and 
toning also had improved fMRI outcomes.12

 In cross-sectional analyses, physically fit seniors had 
fMRI evidence of significantly better cortical connectivity 
and activation during cognitive tasks than unfit seniors (as-
sessed by peak V·o

2
 during exercise).11,13 Physically fit se-

niors also performed significantly better on cognitive tasks 
than unfit seniors in these cross-sectional studies.11,13,14

MRI GRAY MATTER VOLUME LOSS IN SENIORS

Brain gray matter volumes decrease with advancing age, as 
routinely seen in the clinic with brain MRI. In contrast to neu-
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rodegenerative disorders, which are associated with neuronal 
loss, the reductions of gray matter volumes seen in normal 
aging primarily reflect loss of neuropil and synapses.4,5

 A recent RCT in a large cohort of seniors documented 
significantly larger hippocampal volumes after 1 year of 
aerobic exercise, compared with the control intervention 
of simple stretching and toning.15 This finding was associ-
ated with significant improvement in the primary cogni-
tive outcome measure of spatial memory. Similar exercise 
outcomes have been documented in the neocortex. Thus, 
two 6-month RCTs of aerobic exercise in seniors without 
dementia were associated with increased cortical volumes 
compared with sedentary interventions.16,17 In a long-term, 
prospective cohort study, the usual weekly walking dis-
tances reported by healthy adults at baseline were posi-
tively associated with neocortical and hippocampal MRI 
volumes 9 years later.18

 In a large, cross-sectional study of seniors without 
dementia, physical fitness, assessed by treadmill exer-
cise testing (peak V·o

2
), was highly and significantly as-

sociated with hippocampal volumes on MRI (controlling 
for age, sex, and educational level).19 In other cross-sec-
tional studies, physical fitness (measured by peak V·o

2
) 

was associated with better preservation of gray matter 
volumes among both cognitively normal seniors14,20 and 
patients with early AD.21,22 The control groups in these 
latter 2 studies, however, did not generate expected re-
sults; in these seniors without dementia, there was no 
association of cardiorespiratory fitness (peak V·o

2
) with 

gray matter volumes.21,22

MIDLIFE EXERCISE AND REDUCED RISKS OF 

LATER DEMENTIA AND MCI

Adults who routinely engaged in physical activities, sports, 
or regular exercise in midlife carried a significantly lower 
risk of dementia years later, based on a recent meta-anal-
ysis of prospective cohort studies.23 Thus, reduction of de-
mentia risk was documented in 10 of 11 studies, with an 
estimated relative risk of 0.72 (P<.001).23

 Several prospective cohort investigations have reported 
significantly reduced subsequent risks of MCI associated 
with midlife exercise.24-26 A population-based, case-control 
study similarly found that moderate exercise retrospective-
ly reported for midlife was associated with a significantly 
reduced risk of MCI.27 Reduction of MCI risk with retro-
spectively reported earlier life exercise was also document-
ed in a cross-sectional study of a large female cohort.28

 One caveat: the association of midlife exercise with 
later cognitive preservation could be explained by reverse 
causality. In other words, those with very early, preclinical 
neurodegenerative disease might be disinclined to exercise.

INFLUENCE OF PHYSICAL ACTIVITY ON  

MORTALITY IN AD PATIENTS

A population-based, prospective cohort study of incident 
AD patients revealed that those with maintained physical 
activity had a significantly reduced risk of mortality.29 This 
was true even after statistically adjusting for APOE geno-
type, medical comorbidities, and cognitive performance. 
Again, however, reverse causality cannot be excluded.

SHORT-TERM COGNITIVE BENEFIT AMONG THOSE 

WITH MCI OR DEMENTIA

Reverse causality would not explain improved cognitive 
scores in short-term RCTs. A meta-analysis30 of RCTs in 
seniors with MCI or dementia tabulated outcomes with 
exercise durations spanning 2 to 112 weeks. Among the 
12 trials, significant cognitive benefits were documented 
compared with control outcomes.
 Several more recent studies have added to this litera-
ture. Most compelling was the Australian trial randomiz-
ing 170 subjects with “memory problems” to 6 months of 
moderate-intensity exercise vs a sedentary routine.31 The 
exercise group had significantly better scores on the pri-
mary outcome measure after the 6 months, the Alzheim-
er Disease Assessment Scale–Cognitive Subscale; this 
benefit persisted at 12 and 18 months. Interestingly, they 
noted that the extent of improvement on the Alzheimer 
Disease Assessment Scale–Cognitive Subscale com-
pared favorably to the effect of donepezil documented 
in another large clinical trial.32 A similar outcome in se-
niors with MCI was documented in one smaller 6-month 
RCT of “high-intensity aerobic exercise” vs sedentary 
controls (stretching); however, the improvement was 
predominantly in women.33 One additional RCT in se-
niors with MCI identified similar but not statistically 
significant trends after 1 year of exercise; the investi-
gators commented that the analysis was compromised 
by suboptimal adherence to the exercise program.34 In 
women with dementia, a small RCT of regular exercise 
for 1 year significantly improved the Mini-Mental State 
Examination score compared with slight (nonsignificant) 
worsening in the sedentary control group.35 Of note, 2 
of these trials31,34 were included in the meta-analysis by 
Smith et al.10

PLAUSIBILITY FROM ANIMAL STUDIES

The studies in humans suggest that exercise may improve 
cognition in the short term, reduce risks of dementia or 
MCI in the long term, and reduce the age-associated pro-
gressive loss of brain volume. This issue lends itself to as-
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sessment in animal models, in which it is also possible to 
study putative biological mechanisms.

EXERCISE IMPROVES COGNITION IN ANIMALS

Exercised rats or mice (eg, treadmills and running wheels) 
have significantly better scores on memory tests or object 
recognition compared with their more sedentary counter-
parts.36-42 Conversely, immobilization had the opposite ef-
fect, with reduced cognitive scores.43 These findings have 
been extended to primates; monkeys with scheduled exer-
cise for 5 months had significantly better cognitive scores 
than sedentary animals.44

EVIDENCE FOR ENHANCED NEUROPLASTICITY 

INDUCED BY EXERCISE IN ANIMALS

Brain neuroplasticity is a fundamental mechanism for 
learning, memory, and general cognition. A volumi-
nous literature in rats and mice has documented multiple 
mechanisms by which exercise may facilitate such neu-
roplasticity. Thus, exercise has been shown to increase 
expression of synaptic plasticity genes,45 gene products 
such as synapsin I and synaptophysin,46,47 and various 
neuroplasticity-related transcription factors such as cy-
clic adenosine monophosphate response element bind-
ing and intracellular kinases.42,48,49 Hippocampal den-
dritic length and dendritic spine complexity are enhanced 
with exercise.50,51 Neurogenesis within the hippocampal 
dentate gyrus is also induced by exercise.50,52-54 Finally, 
long-term potentiation, which is thought to be a primary 
neurophysiologic substrate in learning, is potentiated by 
exercise,38,41,54 although this effect was confined to male 
animals in one study.55

BRAIN EXPRESSION OF NEUROTROPHIC FACTORS 

INDUCED BY EXERCISE IN ANIMALS

Neurotrophic factors appear to be especially involved in 
learning and neuroplasticity. Brain-derived neurotrophic 
factor (BDNF) has been most extensively investigated 
and, in vitro, modulates brain plasticity, including in-
creasing neuritic outgrowth and synaptic function. It also 
promotes in vitro survival of a vast array of neurons af-
fected by neurodegenerative conditions, including AD.56 
Numerous investigations in mice or rats have found el-
evated brain BDNF concentrations and expression with 
exercise,36,37,41,42,46,47,49,54,57-60 although with one exception.55 
Insulin-like growth factor 1 (IGF-1) interacts with BDNF 
and is likewise elevated in the rat brain by exercise.40,61 Rat 
brain concentrations of glial-derived neurotrophic factor 
are similarly upregulated by exercise.59,62

EXERCISE AND HIPPOCAMPAL NEUROGENESIS  

IN HUMANS

The hippocampus is crucial for memory and progressively 
degenerates in patients with AD, an effect already apparent 
in the earliest stages of dementia (MCI).63 The hippocam-
pal dentate gyrus is also the region most vulnerable to ag-
ing.64 However, this region is one of the few brain regions 
that supports neurogenesis, and dentate gyrus neurogenesis 
is significantly facilitated by exercise in animal studies, as 
previously mentioned.50,52-54,65

 Regional hippocampal dentate gyrus blood volume can 
be measured with brain MRI, and this was shown to be 
a neurogenesis biomarker in mice.65 Extending this to hu-
mans in a small, prospective, uncontrolled trial of young 
adults, 3 months of aerobic exercise resulted in significant-
ly increased hippocampal dentate gyrus blood volume over 
baseline; other hippocampal regions were unchanged.65 
This was interpreted as reflective of dentate gyrus angio-
genesis and hence neurogenesis. It was associated with 
mildly improved cognitive scores. Fitness, as measured by 
peak V·o

2
, significantly correlated with individual differ-

ences in dentate gyrus blood volume.65

NEUROTROPHIC FACTORS, COGNITION, AND  

EXERCISE IN HUMANS

Theoretically, neurotrophic factors may be important in 
combating age-related brain atrophy and perhaps neurode-
generative disease. In contrast to laboratory animals, how-
ever, brain concentrations of neurotrophic factors cannot 
easily be studied in humans. Human investigations have 
focused on circulating levels, which may or may not reflect 
what is going on within the brain.
 BDNF is widely expressed throughout the human adult 
brain,56 whereas levels are significantly reduced in the brains 
of AD patients.66-69 BDNF is rapidly transported in both di-
rections across the blood-brain barrier,70,71 and hence mea-
surement of circulating levels could be relevant to the brain. 
Thus, circulating BDNF levels are reduced in patients with 
AD72,73; moreover, AD patients whose condition is rapidly 
declining have significantly lower serum BDNF concentra-
tions than those whose condition is slowly declining.74 Note 
also that in healthy young adults, BDNF appears to be re-
leased from the human brain by both short-term vigorous 
exercise75 and long-term endurance training76 on the basis 
of arterial and venous measurements.
 In cross-sectional studies of seniors, circulating BDNF 
levels have been significantly associated with cognitive 
test scores after adjusting for multiple covariables,77,78 al-
though confined to women in one study.77 In fact, fitness 
(peak V·o

2
) was significantly correlated with both BDNF 
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and cognitive improvement in one of these studies.78 
Moreover, in a 1-year RCT of exercise among seniors, in-
creased serum BDNF level was associated with increased 
hippocampal volume.15

 The study of aerobic exercise on plasma or serum BDNF 
levels has generated complex findings. Most investigations 
in young adults have documented significant transient in-
creases of circulating BDNF with short-term aerobic exer-
cise,79-82 with one exception.83 Prospective studies of long-
term aerobic exercise, however, have generated negative 
or inconsistent results. Thus, 5 weeks of chronic aerobic 
exercise in young adults was associated with increased 
levels of circulating BDNF in one uncontrolled trial,84 
whereas two trials were negative (8-12 weeks; one con-
trolled).83,85 In one RCT of patients with MCI, 6 months of 
“high-intensity aerobic exercise” resulted in a nonsignifi-
cant trend toward increased plasma BDNF levels in men 
but reduced in women (compared with control values).33 
Somewhat paradoxically, 2 cross-sectional studies docu-
mented an inverse relationship between physical fitness 
and serum BDNF concentrations.86,87

 The few prospective trials of resistance (not aerobic) 
exercise influences on plasma or serum BDNF levels have 
generated primarily negative results. In contrast to aerobic 
exercise, strength and resistance exercise did not elevate 
circulating BDNF concentrations.88-90 A prospective, con-
trolled trial of strength training (10 weeks) failed to in-
crease serum BDNF levels.90 As an exception, 5 weeks of 
resistance exercise raised serum BDNF levels in one other 
prospective, uncontrolled trial in young men.91

 Insulin-like growth factor 1 is widely expressed in the hu-
man brain, and IGF-1 insufficiency has been proposed as a 
risk factor for AD.92 Patients with AD had significantly low-
er circulating IGF-1 levels than controls in one small cross-
sectional study, and these levels were inversely correlated 
with the degree of cognitive impairment.93 Meta-analysis of 
the predominantly cross-sectional studies assessing circulat-
ing IGF-1 levels and cognition in seniors revealed a highly 
significant positive association.94 In healthy young adults, 
circulating IGF-1 is increased by exercise in most88,95-97 but 
not all studies.98 In young adults, long-term aerobic exercise 
failed to elevate circulating IGF-1 levels in 2 RCTs (12-16 
weeks).85,99 In contrast to aerobic exercise, long-term resis-
tance training elevated serum IGF-1 concentrations in 2 pro-
spective, controlled trials100,101 but not in another.102

EXERCISE IMPACT ON BRAIN β-AMYLOID  

AND TAU PROTEIN

Alzheimer disease is the most common neurodegenerative 
dementia and is neuropathologically marked by the accumu-
lation of neuritic plaques, as well as neurofibrillary tangles 

containing hyperphosphorylated tau protein. Perhaps a cru-
cial inciting factor for AD development is the brain depo-
sition of β-amyloid, the primary component of neuritic 
plaques. Brain accumulation of β-amyloid can be assessed 
in vivo using Pittsburgh compound B positron emission to-
mography. One recent investigation (cross-sectional design) 
documented an inverse relationship between long-term ex-
ercise levels and brain Pittsburgh compound B imaging den-
sity in a large cohort of cognitively normal seniors.103 These 
brain imaging findings were mirrored by spinal fluid tau pro-
tein and β-amyloid

42
 biomarkers. Again, however, reverse 

causality cannot be excluded. A small RCT of 6 months of 
exercise in patients with MCI documented a nonsignificant 
trend toward reduced plasma concentrations of β-amyloid

42
 

compared with sedentary controls.33

 Most investigations of exercise and brain β-amyloid de-
position, however, have been performed using transgenic 
mice overexpressing pathogenic amyloid precursor protein 
(or presenilin 2104). The findings have been mixed, with 
a reduction of brain pathogenic β-amyloid deposition or 
amyloid plaques in most104-109 but not all studies.110-112

 Neurofibrillary tangles are marked by hyperphosphor- 
ylated tau protein and are one of the pathological hall-
marks of AD. In transgenic mice expressing a human 
pathogenic tau gene, 9 months of exercise prevented both 
the development of hippocampal tau disease and memory 
impairment, which were present in the sedentary control 
group.113 In 2 other studies, 12 weeks of exercise signifi-
cantly reduced tau phosphorylation in transgenic mice ex-
pressing pathogenic tau114 or presenilin 2104 genes (com-
pared with sedentary controls).

ATTENUATION OF VASCULAR CONTRIBUTIONS 

TO NEURODEGENERATIVE DEMENTIA BY EXERCISE

There is a striking overlap of the risk factors for AD and vas-
cular dementia. Glucose intolerance and diabetes mellitus, 
hypertension, hyperlipidemia, and obesity contribute to not 
only vascular dementia but also to the risk of neurodegen-
erative dementia.6 Intuitively, the influence of these vascular 
factors may be indirect via superimposed small vessel dis-
ease (eg, leukoaraiosis, lacunar strokes, and microbleeds). 
The added burden of cerebrovascular brain damage may 
simply superimpose on neurodegeneration. However, a more 
direct effect of these vascular risk factors on neurodegenera-
tive processes is plausible. Regardless, long-term exercise is 
well known to attenuate each of these risk factors.115-117

OTHER BENEFICIAL EFFECTS OF EXERCISE

Numerous noncognitive, nonvascular benefits additionally 
benefit from exercise, which may be especially relevant to 



881

PHYSICAL EXERCISE TO PREVENT OR TREAT DEMENTIA

For personal use. Mass reproduce only with permission from Mayo Clinic Proceedingsa .

an aging population. This includes reduction of osteoporo-
sis and fracture risk,118 age-related sarcopenia,119 and ben-
efits directed at depression120 and anxiety.121 An exercise 
program may improve behavioral management in seniors 
with dementia122 and fall risk.123 Importantly, long-term 
physical activity and fitness reduce mortality risk in the 
general population.117,124

ADVERSE EFFECTS OF EXERCISE

Advocating for an intervention (in this case, exercise) 
should be balanced against possible adverse effects. 
Exercise may result in orthopedic injuries, increase fall 
risk, and provoke acute coronary syndromes. Thus, phy-
sicians should help patients select exercise programs 
compatible with their capabilities and cardiopulmonary 
status. In general, people who have been sedentary for 
an extended time should begin an exercise program with 
modest exercise targets, but escalating as fitness is pro-
gressively achieved.

RESISTANCE TRAINING

Although the focus of this article has been on aerobic 
fitness, limited studies have suggested that regular resis-
tance exercise (pushing or pulling against fixed weight-
ing) may also improve cognition. Indeed, improved 
cognitive scores were documented in RCTs conducted 
for 2,125 6,101 and 12126 months. An additional 1-year fol-
low-up in this last study revealed that cognitive benefits 
were sustained in the exercise group compared with the 
sedentary group.127 However, whole-brain volumes were 
inexplicably reduced in this 12-month resistance training 
trial126; this is in contrast to previously cited aerobic ex-
ercise trials in which cortical and hippocampal volumes 
were increased.15-19

 Obviously, resistance training may contribute to aero-
bic fitness if the focus is on lighter weights (lesser resis-
tance), more repetitions, and brief rest periods. However, 
the effect of resistance training on cognition has been 
inadequately studied to date and is difficult to assess in 
animal studies.

IS MORE EXERCISE BETTER?

The literature cited herein suggests cognitive benefits from 
aerobic exercise, but it remains unclear whether there are 
threshold effects or whether exercise duration and inten-
sity are important variables. In mice, longer durations of 
exercise were more effective than shorter durations in 
atten uating the neuropathologic and clinical effects of 
the dopa minergic neurotoxin, 1-methyl-4-phenyl-1,2,3,6-

tetrahydro   pyri dine.128,129 In a single human study, serum 
BDNF levels increased with exercise in proportion to the 
degree of lactate elevation.80

 Human clinical trials assessing exercise duration or in-
tensity, however, have been confined to resistance training. 
In a 6-month RCT in seniors, 2 intensities of resistance 
exercises (moderate and high) resulted in similar degrees 
of cognitive benefit.101 In another RCT, once-weekly re-
sistance exercise significantly improved cognitive scores 
similar to twice-weekly exercise.126 However, duration 
was important in this latter trial in that the cognitive ben-
efit was only documented at 12 but not 6 months. These 
2 trials, however, assessed resistance training, not aerobic 
exercise, per se.

AEROBIC EXERCISE PRESCRIPTION

Aerobic exercise implies training that elevates heart rate 
and increases V·o

2
, but the exercise parameters to recom-

mend are not well delineated. The human trials summa-
rized herein have primarily used moderate aerobic exercise, 
which typically implies exercise sufficient to elevate heart 
rate or V·o

2
 to approximately 60% of the maximum. For 

example, in 2 RCTs, the dose of 150 minutes of moderate 
aerobic exercise per week was sufficient to be cognitively 
protective31 and associated with increased hippocampal 
volume plus improved spatial memory.15 Such moderate 
intensity is a practical exercise target, recognizing that 
greater exercise intensity might not be tolerated and lead 
to greater numbers of study dropouts or nonadherence, at 
least initially.   
 Regular aerobic exercise gradually increased to achieve 
60% of maximal heart rate or V·o

2
 and performed at least 

150 minutes weekly seems reasonable as an initial regimen. 
This is similar to the recommendation of the American 
Heart Association, which advises “…moderate-intensity 
aerobic physical activity for a minimum of 30 minutes on 
five days each week or vigorous-intensity aerobic activity 
for a minimum of 20 minutes on three days each week”; 
parenthetically, they also recommended resistance exer-
cises “for a minimum of two days each week.”130 Future 
research should investigate exercise parameters to better 
determine the optimal recommendations for preservation 
of cognition and brain health.
 Choice of exercise routines needs to be guided by 
patients’ capabilities. Those with imbalance or lower 
limb arthritis may take advantage of health facilities that 
provide exercise machines used in the sitting position. 
The choice of exercise should also be consonant with 
patient interests because if too onerous it is likely to be 
abandoned. For very sedentary individuals, a therapist 
or knowledgeable trainer may be advisable to gradually 
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introduce and escalate exercise routines and further rein-
force patient effort.

CONCLUSION

These data suggest that aerobic exercise is associated with 
a reduced risk of cognitive impairment and dementia; it 
may slow dementing illness. A compelling argument can 
be made for this via 2 plausible biologic pathways. First, 
a convergence of evidence from both animal and human 
studies suggests that aerobic exercise may attenuate pro-
gression of neurodegenerative processes and age-related 
loss of synapses and neuropil. This may occur via a di-
rect influence on neurodegenerative disease mechanisms 
or facilitation of neuroprotective neurotrophic factors and 
neuroplasticity. Not to be overlooked, however, is a second 
pathway, cerebrovascular disease. Cerebrovascular burden 
contributes to dementia risk, especially via small vessel dis-
ease (eg, lacunes and leukoaraiosis). Vascular risk factors 
are well known to be reduced by aerobic exercise. Thus, 
ongoing, moderate-intensity physical exercise should be 
considered as a prescription for lowering cognitive risks 
and slowing cognitive decline across the age spectrum.
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