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ABSTRACT

Objective: To examine whether engagement in physical activity might favorably alter the age-
dependent evolution of Alzheimer disease (AD)-related brain and cognitive changes in a cohort
of at-risk, late-middle-aged adults.

Methods: Three hundred seventeen enrollees in the Wisconsin Registry for Alzheimer’s Prevention
underwent T1 MRI; a subset also underwent **C-Pittsburgh compound B-PET (n = 186) and
18F-fluorodeoxyglucose-PET (n = 152) imaging. Participants’ responses on a self-report measure
of current physical activity were used to classify them as either physically active or physically
inactive based on American Heart Association guidelines. They also completed a comprehensive
neuropsychological battery. Covariate-adjusted regression analyses were used to test whether
the adverse effect of age on imaging and cognitive biomarkers was modified by physical activity.

Results: There were significant age X physical activity interactions for g-amyloid burden (p =
0.014), glucose metabolism (p = 0.015), and hippocampal volume (p = 0.025) such that, with
advancing age, physically active individuals exhibited a lesser degree of biomarker alterations
compared with the physically inactive. Similar age X physical activity interactions were also
observed on cognitive domains of Immediate Memory (p = 0.042) and Visuospatial Ability (p =
0.016). In addition, the physically active group had higher scores on Speed and Flexibility (p =
0.002) compared with the inactive group.

Conclusions: In a middle-aged, at-risk cohort, a physically active lifestyle is associated with an
attenuation of the deleterious influence of age on key biomarkers of AD pathophysiology. How-
ever, because our observational, cross-sectional design cannot establish causality, randomized
controlled trials/longitudinal studies will be necessary for determining whether midlife participa-
tion in structured physical exercise forestalls the development of AD and related disorders in later
life. Neurology® 2014;83:1753-1760

GLOSSARY

AB = B-amyloid; ABi = B-amyloid indeterminate; AD = Alzheimer disease; DVR = distribution volume ratio; FDG = *8F-
fluorodeoxyglucose; FH = parental family history; MET = metabolic equivalent; MNI = Montreal Neurological Institute;
PCC = posterior cingulate cortex; PiB = 'C-Pittsburgh compound B; WRAP = Wisconsin Registry for Alzheimer's
Prevention.

Animal models of Alzheimer disease (AD) show that physical exercise represents an efficacious
means for favorably altering not only cognitive trajectories but also underlying pathophysiologic
processes, including B-amyloid (AB) burden, tau phosphorylation, and neuronal loss.'”
Whereas the beneficial effects of exercise on cognition in older adult humans have been well
studied,* investigations of the influence of exercise on AD biomarkers have only just begun. The
emerging evidence suggests that higher levels of physical exercise/fitness are associated with
preserved brain volume in AD-vulnerable structures,”” reduced AR burden,*'° and possibly
lowered intracellular tau protein® (but see references 11 and 12 for divergent findings). Of note,
an evolving body of work indicates that exercise modifies age-associated alterations in
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AD-vulnerable brain structures.”'>'* This is of
considerable significance given that age is
widely recognized as the most critical determi-
nant of the accumulation of AD-related pathol-

Ogy’ls,IG
the ultimate manifestation of symptomatic

and the strongest risk factor for

AD."”'® If indeed physical activity ameliorates
age-related changes in AD biomarkers, it raises
the exciting possibility that exercise might have
a pivotal role in the prevention of AD.

In this study, we investigated whether
engagement in physical activity attenuates
age-associated alterations in fibrillar AB, cere-
bral glucose metabolism, hippocampal volume,
and cognitive function—core biomarkers of the
AD pathophysiologic process'*—in a cohort of
at-risk, late-middle-aged adults. We begin by
first comparing the relative influence of age,
parental family history (FH) of AD, and APOE
g4—the 3 established risk factors for AD—on

interindividual variation in these biomarkers.

METHODS Participants. Three hundred seventeen cogni-
tively normal adults from the Wisconsin Registry for Alzheimer’s
Prevention (WRAP) participated in this study. The WRAP is a
longitudinal registry of approximately 1,500 middle-aged adults
who were cognitively healthy and between the ages of 40 and 65
years at study entry.”* Cognitive normalcy was adjudicated
based on intact performance on a comprehensive battery of
neuropsychological tests, absence of functional impairment, and
absence of neurologic/psychiatric conditions that might impair
cognition.”® All 317 participants completed a physical activity
questionnaire, neuropsychological evaluations, and MRI brain
scans. A subset also underwent ''C-Pittsburgh compound B
(PiB, n = 186) and '*F-fluorodeoxyglucose (FDG, n = 152)
imaging. All participants who had PET imaging also had MRL
And, with the exception of 3 individuals, all participants who had
FDG imaging also had PiB imaging.

Standard protocol approvals, registrations, and patient
consents. The University of Wisconsin Institutional Review
Board approved all study procedures and each subject provided

signed informed consent before participation.

Physical activity measurement. Participants completed the
Women’s Health Initiative physical activities questionnaire.”!
The questionnaire assesses current frequency and duration of
walking outside the home for >10 minutes without stopping,
and of engagement in mild (e.g., slow dancing, golf), moderate
(e.g., calisthenics, easy swimming), and vigorous (e.g., jogging,
aerobics) exercise. For walking, frequency ranged from rarely to
=7 times/week and duration ranged from <20 minutes to
=1 hour/session. For mild, moderate, and vigorous exercises,
frequency ranged from none to =5 days/week whereas duration
ranged from <30 minutes to =1 hour/session.

Following established protocol,”! the midpoint of reported
frequency and duration for each exercise category were multiplied
to create respective “hours/week” measures. Next, these hours/
week measures were assigned metabolic equivalent (MET)

weights as follows: for walking, casual speed = 0, average = 3,
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fast = 4, and very fast = 4.5; mild exercise = 3, moderate = 4,
and vigorous = 7. This yielded MET-hours/week measurements
for each exercise intensity level.?! Finally, all 4 MET-hours/week
variables were summed to create a total physical activity score.
Because this total physical activity score was severely skewed even
after transformation, and to make our analyses more clinically
meaningful, participants were classified as physically active
(n = 238) or inactive (n = 79) based on whether their total
physical activity score was =7.5 MET-hours/week, which ap-
proximates current American Heart Association recommendation

of 30 minutes of moderate exercise for 5 days/week.®***

Neuroimaging protocol. Details on the acquisition and post-
processing of the PET and MRI examinations have been previ-
ously described.” Briefly, 3-dimensionsal PET data were
acquired on a Siemens EXACT HR+ scanner (Siemens AG,
Erlangen, Germany). PiB imaging consisted of a 6-minute
transmission scan and a 70-minute dynamic scan upon bolus
injection. FDG imaging was done per Alzheimer’s Disease

1>* and involved a 30-minute

Neuroimaging Initiative protoco
scan acquired 30 minutes after bolus injection. Postprocessing
for both PiB and FDG was based on an in-house automated
pipeline.”> We derived distribution volume ratio (DVR) maps
from the PiB images using the Logan method, with a cerebellar
gray matter reference.”® Three-dimensional MRIs were acquired
on a GE x750 3.0T scanner (GE Healthcare, Waukesha, W1I)
using a spoiled gradient recalled echo sequence. Participants
completed the imaging examinations within 5.79 * 4.95
months of the physical activity questionnaire.

To enhance clinical applicability and allow for the possibility
of regional heterogeneity in AR deposition within this age range
when AP burden may only be emerging, we determined amyloi-
dosis via visual rating of the DVR maps. Specifically, after an initial
assessment of a subset of images by 3 blinded raters yielded high
inter- and intrarater reliability (intraclass correlations >0.95),
a similarly blinded single rater visually rated all images on the
intensity and pattern of cortical amyloid binding.** Scans were
deemed (1) AB negative (AB—) if there was no cortical AR or
only nonsignificant patchy/diffuse cortical AB not resembling an
AD pattern; (2) AB indeterminate (ABi) if there was PiB binding
in at least 3 cortical lobes resembling an AD pattern but less
intense than an overtly positive scan; or (3) AR positive (AB+)
when there was unambiguous, AD-like, PiB binding in the cor-
tex.?> Of the 186 individuals with PiB data, 74 were classified as
AB—, 77 were ABi, and 35 were AB+. For FDG, we focused on
the posterior cingulate cortex (PCC), a well-established inception

9

site for AD-related neurometabolic alterations,' and sampled
FDG uptake values from it (normalized to whole-brain uptake)
using the PCC mask within the Alzheimer’s Disease Neuroimag-
ing Initiative FDG Meta-ROI suite.”” We measured hippocampal

volume from the MRIs using FreeSurfer version 5.1.

Neuropsychological assessment. Participants completed a
comprehensive neuropsychological battery that has been previously
shown to segregate into 6 cognitive factors*®*’: Immediate Memory
(Rey Auditory Verbal Learning Test trials 1 and 2); Verbal Learning
and Memory (Rey Auditory Verbal Learning Test trials 3-5 and
Delayed Recall); Working Memory (Digit Span and Letter-
Number Sequencing subtests of the Wechsler Adult Intelligence
Scale-3rd edition); Speed and Flexibility (Stroop Color-Word
Interference and Trail Making Test); Visuospatial Ability (Block
Design and Matrix Reasoning subtests of the Wechsler Abbreviated
Scale of Intelligence and Benton Judgment of Line Orientation);
and Verbal Ability (Vocabulary and Similarities subtests from
the Wechsler Abbreviated Scale of Intelligence, Boston Naming



[ Table 1 Characteristics of study participants

Physically inactive

Physically active

Variable (n=79) (n = 238) p Value
Demographics
Age, y 59.39 (6.89) 60.59 (6.07) 0.169
Female, % 70.9 67.2 0.545
Education 15.80 (2.21) 16.09 (2.38) 0.339
White, % 96.2 983 0.267
FH positive, % 78.5 723 0.276
APOE :4 positive, % 40.5 39.9 0.926
Mini-Mental State 29.39 (0.90) 29.48 (0.92) 0.498
Examination
CES-D 7.66 (7.90) 5.54 (5.27) 0.022
Brain scan-physical activity 5.15 (4.52) 6.01 (5.07) 0.185
assessment interval, mo
Vascular indices
Hypertension, % 11.4 13.0 0.670
Diabetes, % 0.0 1.7 0.575
Smoker, % 47.2 46.1 0.907
Taking a B-blocker, % 8.9 8.4 0.900
Taking a statin, % 21.5 24.4 0.605
Body mass index, kg/m? 30.65 (6.29) 27.06 (4.47) <0.001
Systolic blood 126.33 (13.78) 123.74 (16.20) 0.169
pressure, mm Hg
Diastolic blood 75.04 (8.93) 73.40 (9.61) 0.183
pressure, mm Hg
Total cholesterol, mg/dL 196.68 (34.77) 196.07 (33.91) 0.889
HDL cholesterol, mg/dL 54.65 (13.65) 61.65 (17.70) <0.001
Homocysteine, pmol/L 9.32 (3.86) 9.16 (2.48) 0.671
Creatinine, mg/dL 0.86 (0.16) 0.88(0.18) 0.231
hs C-reactive protein, mg/L 2.98 (3.28) 2.31 (4.35) 0.211
HOMA-IR 2.76 (2.41) 2.03(1.76) 0.014
Interleukin-6, pg/mL 2.10 (1.65) 1.99 (1.95) 0.679
Imaging biomarkers
PiB-PET visual rating,® %
AB-— 51.9 35.1 0.094
Api 30.8 455
AB+ 17.3 19.4
PiB-PET DVR® 1.12(0.11) 1.13(0.13) 0.510
FDG-PET,? nCi/mL 82,716.66 (16,004.42) 86,587.46(20,367.67) 0.274
Hippocampal volume, mm? 3,942.94 (411.16) 3,935.30 (424.25) 0.889

Abbreviations: Ag = B-amyloid; ABi = Ap indeterminate; CES-D = Center for Epidemiologic
Studies Depression Scale; DVR = distribution volume ratio; FDG = *eF-fluorodeoxyglucose;
FH = parental family history of Alzheimer disease; HDL = high-density lipoprotein;
HOMA-IR = Homeostasis Model Assessment of Insulin Resistance li.e., [glucose x insulin]/
405]); hs = high-sensitivity; PiB = 1*C-Pittsburgh compound B.

Values are mean (SD) unless otherwise specified.

2For PiB, total n = 186, physically inactive n = 52, physically active n = 134; for FDG, total
n = 152, physically inactive n = 41, physically active n = 111. PiB-PET DVR data were
extracted from a precuneus region of interest. FDG-PET data were extracted from a pos-
terior cingulate region of interest.

Test, and Reading subtest of the Wide-Range Achievement Test—
3rd edition). To minimize multiple comparisons, these factor
scores, rather than the component cognitive tests, were
interrogated in the present analyses. Participants completed these
cognitive tests during the same study visit as the physical activity

questionnaire.

Vascular risk factors. Participants completed a health history
questionnaire that included questions about cardiovascular dis-
ease. They also underwent a clinic visit that comprised anthropo-
metric measurements, blood pressure readings, and phlebotomy

for laboratory tests implicated in vascular disease.

Statistical analyses. Group differences on demographic and vas-
cular measures were tested using independent samples 7 test or x*
analyses. To determine the relative influence of age, FH, and APOE
€4 status on our imaging and cognitive measures, we fitted a series
of linear (for hippocampal volume, FDG, and cognitive factors) or
logistic (for PiB rating) regression models that were adjusted for
relevant covariates such as sex, education, intracranial volume, and
global FDG uptake as applicable. To address the primary aim of
this study, i.e., the modulation of age-associated alterations in AD
biomarkers by physical activity, we fitted covariate-adjusted linear
or logistic regression models in which the term of primary interest
was the interaction between age and level of physical activity (i.e.,
active vs inactive). Where significant, this term would indicate that
the deleterious effect of age on these biomarkers is modified by
physical activity. To facilitate the interpretability of the interaction
terms, age was treated as a dichotomy (<60 [younger] vs =60
[older]) during model fitting. In addition, for all the logistic
regression models, we collapsed the AB— and ABi groups into
one group such that the regression coefficients indicated the
likelihood of being unambiguously AB+. Alternative groupings
(e.g, AB+ vs AB—, AB+ vs ABi vs AB—) were explored and
results were not substantively changed. All analyses were performed
using SPSS 20.0 (IBM Corp., Armonk, NY) or SAS 9.2 (SAS
Institute, Cary, NC). Only findings with a 2-tailed p value
=0.05 were considered significant.

RESULTS Background characteristics. The groups did
not differ on any demographic variable or imaging
biomarker. Although the inactive group had higher
depressive symptoms, their mean score on this mea-
sure was well below the cutpoint (i.e., 16) for clinical
depression.”® The inactive group also exhibited worse
scores on measures of body habitus, high-density
lipoprotein, and insulin resistance (table 1). Our
primary analyses were rerun, controlling for these 4
potentially confounding factors.

AD risk factors and interindividual variation in AD
biomarkers. As expected, age made a greater contribu-
tion to between-person variability in all biomarkers
compared with FH and APOE e4. The only
exceptions were the Verbal Ability composite
(wherein FH was more influential) and the Working
Memory composite, which was not influenced by any
of the 3 risk factors (table 2). To further validate these
findings, especially given the apparently modest
influence of FH and APOE €4, the data were
reanalyzed using a series of 2-block hierarchical
regression in which relevant covariates (e.g., sex and

Neurology 83  November 4, 2014 1755



[ Table 2 Influence of age, FH, and APOE &4 on interindividual variability in AD biomarkers ]
Age FH APOE =4

Biomarker B (SE) p B (SE) ] B (SE) p

PiB? 0.14 (0.04) 0.001 0.78 (0.52) 0.130 1.06 (0.43) 0.013
FDG® -170.97 (77.00) 0.028 154.99 (973.85) 0.874 —-965.22 (921.79) 0.297
Hippocampal volume® -21.32(3.39) <0.001 6.66 (48.98) 0.892 -54.93 (43.64) 0.209
Immediate Memory® -0.03 (0.01) 0.001 -0.15(0.13) 0.261 —-0.05(0.12) 0.656
Verbal Learning and Memory® -0.03 (0.01) <0.001 -0.13(0.13) 0.307 -0.11 (0.11) 0.330
Speed and Flexibility® -0.07 (0.01) <0.001 —-0.01 (0.11) 0.924 —0.06 (0.10) 0.563
Working Memory® -0.02 (0.01) 0.126 —-0.07 (0.14) 0.639 -0.20 (0.12) 0.111
Visuospatial Ability® —-0.05 (0.01) <0.001 -0.05(0.11) 0.649 —-0.03(0.10) 0.732
Verbal Ability? 0.00 (0.01) 0.743 -0.31(0.11) 0.004 0.10 (0.09) 0.271

Abbreviations: AD = Alzheimer disease; B = regression estimate; FDG = *8F-fluorodeoxyglucose; FH = parental family history of AD; PiB = 11C-Pittsburgh
Compound B; SE = standard error.
Sample sizes for the analyses were 317 for hippocampal volume and cognition, 186 for PiB, and 152 for FDG.
#Variables included in the statistical model were sex, age, FH, and APOE £4.

bVariables included in the statistical model were sex, global FDG, age, FH, and APOE 4.
¢Variables included in the statistical model were sex, intracranial volume, age, FH, and APOE &4.
dVariables included in the statistical model were sex, education, age, FH, and APOE ¢4.
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global FDG, for the PCC FDG model) were force-
entered in block 1, with age, FH, and APOE €4
stepwise-entered in block 2. Results from this set
of analyses were consistent with the original
findings, i.e., across all models, age was the only
variable selected for entry in block 2, with the
following exceptions: for PiB, APOE €4 was also
selected for entry after age; for Verbal Ability, only
FH was selected for entry; and for Working Memory,
neither age, nor FH, nor APOE €4 was selected.

Physical activity ameliorates age-associated biomarker
alterations. Table 3 and the figure present the results
of the analyses that investigated whether physical activ-
ity attenuates the deleterious effect of age on AD bio-
markers. The linear regression models revealed age X
physical activity interaction effects for FDG, hippo-
campal volume, Immediate Memory, Visuospatial
Ability, and a trend for Verbal Ability. Follow-up
simple main effects analyses revealed 2 patterns of
within-group age effects, all favoring the active
group. Pattern A (observed for FDG and Immediate
Memory) consisted of an age effect, e.g., increased age
associated with reduced FDG, within the inactive
group, that was not seen within the active group.
Pattern B (observed for hippocampal volume and
Visuospatial Ability) consisted of an age effect, e.g.,
increased age associated with decreased hippocampal
volume, within both groups. However, this effect was
attenuated in the active group (43% less for
hippocampal volume and 38% less for Visuospatial
Ability) relative to the inactive group. Of note, the
significance of the age X physical activity interaction
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term in each model remained essentially unaltered after
additional adjustment was made for the potentally
confounding vascular and mood measures: FDG
(@ 0.015), hippocampal volume (p = 0.021),
Immediate Memory (p = 0.051; originally 0.042),
and Visuospatial Ability (p = 0.019).

The logistic regression model for determining

whether physical activity attenuates the association
between age and unambiguous AP aggregation was
fic with the Firth penalized likelihood method®
because of the quasi-separation in the dataset caused
by a cell (younger, inactive, and AR +) with 0 count. As
recommended,”" statistical significance was assessed
using likelihood ratio testing. The age X physical activ-
ity term was statistically significant (Ax?; = 6.03, p =
0.014). Follow-up simple main effects analyses revealed
that, within the inactive group, increased age was asso-
ciated with higher odds of being AR+, whereas within
the active group, the age effect was absent (i.e., pattern
A finding). This finding persisted upon adjustment for
the 4 potentially confounding covariates noted earlier.
We repeated the PiB analyses with quantitative DVR
data extracted using a 3-mm-radius sphere placed
around the nexus of most overt amyloidosis in our
cohort (MNI x, y, z coordinates [—8, —66, 52], pre-
cuneus).” We observed an age X physical activity
effect (B [SE] = —0.63 [0.32], p = 0.047), with sim-
ple main effects analyses showing that increased age was
associated with greater PiB binding in the inactive
group (B [SE] = 0.92 [0.20], p = 0.001) but not in
the active group (B [SE] = 0.29 [0.15], p = 0.100).

Lastly, as exploratory analyses, we deleted the
age X physical activity term from those models



[ Table 3

Biomarker
PiBde

FDGef

Hippocampal volume®?

Immediate Memory®"

Verbal Learning and Memory®"

Speed and Flexibility®"

Working Memory®"
Visuospatial Ability®"
Verbal Ability®"

Physical activity attenuates age-related alterations in AD biomarkers

Age x physical activity® Ag€(nactive)” Ageactive)®

B (SE) p 8 (SE) p B (SE) p
—2.95 (1.59) 0.014 3.61(1.47) 0.013 0.74 (0.50) 0.140
4,945.83 (1,999.26) 0.015 —4,379.60 (1,763.52) 0.018 1,133.06 (1,048.56) 0.282
222.69 (99.02) 0.025 —385.44 (71.82) <0.001 -165.93 (52.31) 0.002
0.53 (0.26) 0.042 -0.63(0.22) 0.006 -0.16 (0.13) 0.232
0.27 (0.25) 0.279 — — = —
0.19 (0.22) 0.389 — — — —
0.35(0.27) 0.196 — — — —
0.53(0.22) 0.016 -0.88 (0.18) <0.001 -0.33(0.11) 0.003
0.35 (0.21) 0.094 — — = —

Abbreviations: AD = Alzheimer disease; 8 = regression estimate; FDG = *8F-fluorodeoxyglucose; PiB = **C-Pittsburgh Compound B; SE = standard error.
Sample sizes for the analyses were 317 for hippocampal volume and cognition, 186 for PiB, and 152 for FDG.

2The regression estimates and associated p values are for the age X physical activity interactive term in each biomarker's model. This term assesses
whether physical activity modifies the effect of age on the examined biomarker.
°The regression estimates and associated p values are for the simple main effect of age on each biomarker within the inactive group.

°The regression estimates and associated p values are for the simple main effect of age on each biomarker within the active group.

dVariables included in the full model were sex, age, physical activity, and age x physical activity. Variables included in the simple main effects model were

sex and age.

¢ Statistical significance for the age x physical activity term in each full model remained essentially unchanged after additional adjustment was made for
depressive symptoms, body mass index, high-density lipoprotein, and insulin resistance.
fVariables included in the full model were sex, global FDG, age, physical activity, and age x physical activity. Variables included in the simple main effects
model were sex, global FDG, and age.
9Variables included in the full model were sex, intracranial volume, age, physical activity, and age x physical activity. Variables included in the simple main
effects model were sex, intracranial volume, and age.
hVariables included in the full model were sex, education, age, physical activity, and age x physical activity. Variables included in the simple main effects
model were sex, education, and age.

wherein it was null (i.e., Verbal Learning and
Memory, Speed and Flexibility, Working Memory,
and Verbal Ability) and refit the model to assess the
main effect of physical activity. We observed an effect
for only Speed and Flexibility (B [SE] = 0.35 [0.11],
» = 0.002), wherein the active group had higher
scores compared with the inactive group.

DISCUSSION This study showed that, in a late-
middle-aged cohort at risk of AD, physically active
individuals experienced less age-related alterations in
AB deposition, glucose metabolism, hippocampal
volume, Immediate Memory, and Visuospatial
Ability compared with physically inactive persons.
These internally replicated findings are novel given
that no prior studies have tested whether physical
activity might attenuate the adverse relationship
between age and putative AD pathology using an
array of core AD biomarkers and a unique cohort of
at-risk middle-aged adults. Even so, we note that we
are unable to definitively establish the directionality
of these observed effects given the observational,
cross-sectional nature of our design. This study also
found that age was, overall, more influential than FH
and APOE €4 in explaining interindividual variation
in these AD biomarkers.

A large body of work, including observational and
intervention studies, has shown that physical activity
is beneficial for maintaining cognitive function and
delaying the onset of AD and related diseases among
older adults.*** However, it is only recently that stud-
ies have begun to investigate the potential effects of
physical activity on biological markers of the patho-
physiologic cascade associated with AD. A landmark
study® demonstrated that aerobic training engenders
increased hippocampal volume, confirming initial re-
ports of augmented hippocampal angiogenesis/neuro-
genesis™ and perfusion® after structured aerobic
training. Other investigations®’ have similarly re-
ported associations between cardiorespiratory fitness,
an index of habitual physical activity, and hippocam-
pal volume.

Although hippocampal atrophy is a common phe-
notype of AD, it is not pathognomonic given that it is
also observed in other clinical syndromes.**?” There-
fore, more recently, there has been an interest in
determining whether physical activity modulates
more elemental hallmarks of AD, such as A aggre-
gation. Some studies found that older adults who
frequently engaged in physical activity exhibited
reduced AR®*'° and tau® abnormalities compared

with their less active peers, whereas other reports''?
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[ Figure Exercise engagement favorably alters age-associated biomarker alterations
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failed to detect such effects. Our study extends these
catlier investigations in several important ways. First,
we studied a unique, well-characterized cohort of late-
middle-aged adults, the majority of whom harbor key
risk factors for AD (73.8% with FH of AD and
40.1% APOE €4 positive). Second, compared with
these prior studies, which mostly focused on Af, our
study examined an array of the major biomarkers of
AD pathophysiology.'® Third, our sample size is con-
siderably larger than most prior studies, conferring
added validity to our findings. Finally, this study
shows novel associations indicative of an ameliorative
role for physical activity vis-a-vis age-related patho-
physiologic alterations in the AD cascade. These as-
sociations provide confirmatory support for earlier
preliminary reports suggesting that physical activity
retards aging-induced brain atrophy in older
adules.">

Not surprisingly, our examination of the com-
parative influence of age, FH, and APOE €4 on
the AD biomarkers revealed that age explained a
greater proportion of the interindividual variation
in these biomarkers. Although, to our knowledge,
no prior study has directly investigated the relative
degree to which these 3 cardinal risk factors for AD
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influence in vivo biomarker abnormalities, prior
epidemiologic and autopsy studies have high-
lighted the singular role that age plays in AD
incidence and neuropathology. For example, an
carly population-based study revealed that the
age-specific incidence of AD is nearly 14 times
higher in the 85 years and older age group com-
pared with the 65 to 69 group,'” a finding that has
since been replicated in several studies.'® Similarly,
autopsy studies have demonstrated that there is a
strong age gradient to the frequency and severity of
AR deposits and neurofibrillary tangles,'” and that
the effect of APOE €4 on these histologic markers is
likely confounded with age.’® A full elucidation of
the mechanism of action underlying this robust
relationship between age and the clinicopathologic
features of AD lies beyond the scope of this study.
In one theoretical framework,* AD is seen as
resulting from the intricate interactions among
multiple age-related molecular changes, some pro-
grammed and others stochastic, that ultimately
engender increased entropy. This elevated entropy
is considered the final common pathway to the
progressive neural and cognitive decline that char-
acterizes AD.'®3? Such theoretical models might



prove useful for generating testable hypotheses that
further our understanding of the strong covariation
between age and the clinical and pathologic fea-
tures of AD.

A key limitation of this study is its cross-sectional
design. Although we have used statistical approaches
to estimate the potential for physical activity to ame-
liorate age-associated ~ pathophysiologic ~ changes
within the AD cascade, a truly prospective design
(especially in the context of a randomized controlled
trial), will be critical to evaluating whether physical
activity exerts a causal influence on cognitive/bio-
marker trajectories in people at risk of AD. Such lon-
gitudinal data, as are being collected in the WRAP
cohort, will also provide needed evidence concerning
rates of progression to mild cognitive impairment/
dementia among asymptomatic middle-aged adults
who engage in differential levels of physical activity.
Relatedly, our cross-sectional design does not permit
us to exclude the possibility of reverse causality (i.e.,
that favorable biomarker profiles enable physical
activity). We also acknowledge that the demographic
composition of our cohort might limit the generaliz-
ability of our study findings. Lastly, self-reported
measures are vulnerable to various sources of bias.
Objective measures of physical activity and fitness,
such as accelerometry and graded exercise testing,
would likely provide more valid estimates of the influ-
ence of physical activity on cognitive/biomarker
trajectories.

Overall, this study demonstrates that the deleteri-
ous effect of aging on AD biomarkers and cognition is
attenuated among physically active middle-aged
adults at risk for AD compared with their less active
peers. If these findings are supported by prospective,
controlled studies, it would provide compelling evi-
dence for physical activity as an efficacious approach
to AD prevention, particularly in risk-enriched

cohorts.
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fibrillation (AF). It may be helpful to include the
details of the education provided to the professionals
or patients who did self-measurement. Was the pulse
thythm irregularity measured by palpation of the
radial artery?

Author Response: Bernd Kallmiinzer, Martin
Kohrmann, Erlangen, Germany: We thank Dr.
Totah for his comments and interest. Screening for
AF by peripheral pulse palpation is recommended by
international guidelines for patients 65 years or older
to prevent ischemic stroke.” Among stroke survivors,
the risk for paroxysmal AF is an expected 5-20 times
higher than among cohorts of primary prevention and
silent episodes are easily missed by single ECG diag-
nostics.”> Before this study, it was unclear if the
peripheral pulse palpation technique was feasible
and accurate among stroke survivors with cognitive
and sensomotoric handicaps.

In our study, patients were offered a training pro-
gram that provided basic information on paroxysmal
AF and cardioembolic stroke. Participants were tu-
tored on performing reliable pulse measurements at
the radial artery. They were instructed to distinguish
between absolute arrhythmic pulse sensation (indica-
tive for paroxysmal AF) and regular peripheral pulse
(indicative for a normal heart rhythm).

As Dr. Totah mentioned, the participants measured
irregularities of the peripheral pulse at the radial artery
and were then free to choose the side of measurement,
depending on preexisting handicaps. This method
could serve as a simple, noninvasive strategy to guide
ECG diagnostics for secondary stroke prevention.

© 2015 American Academy of Neurology
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DEFINING THE CLINICAL COURSE OF MULTIPLE
SCLEROSIS: THE 2013 REVISIONS

Francois H. Jacques, Gatineau, Canada: I read with
interest the article by Lublin et al." When defining
discase subtypes—Ilike neuromyelitis optica—it is
clear that pathophysiology should take precedence
over clinical and subjective descriptions. The sub-
types proposed by Lublin et al. are arbitrary and often
diagnosed retrospectively. There is pathophysiologic
evidence suggesting that multiple sclerosis (MS) is a
progressive disease from the onset and that inflamma-
tory pathologic processes persist well into the progress-
ive phases of the disease. The absence or decrease in
remission is a sign of exhaustion of CNS compensatory
mechanisms rather than a change in disease process.
The negative interferon and glatiramer trials in pro-
gressive MS are more likely the result of combining
modest drug efficacy with insensitive clinical endpoints
(i.e., Expanded Disability Status Scale) vs a different
disease mechanism. Newer trials such as INFORM
and ASCEND should soon confirm this. MS subtypes
should be replaced by MS stages (radiologically isolated
syndrome through secondary progressive MS) or more
simply MS with or without disease activity or with or
without progression.

Author Response: Fred D. Lublin, New York: We
thank Dr. Jacques for his interesting comments and
hypotheses and await data to answer these questions.
Our publication is in agreement with his suggestion
to categorize MS by the presence of activity or

progression.
© 2015 American Academy of Neurology
1. Lublin FD, Reingold SC, Cohen ]S, et al. Defining the

clinical course of multple sclerosis: the 2013 revisions.

Neurology 2014;83:278-286.

CORRECTION

Physical activity attenuates age-related biomarker alterations in preclinical AD

In the article “Physical activity attenuates age-related biomarker alterations in preclinical AD” by O.C. Okonkwo et al.
(Neurology® 2014;83:1753-1760), there is an error in table 1. Under “Vascular indices,” the third row should read “Ever
smoked, %,” rather than “Smoker, %” as originally published. The authors regret the error.

Author disclosures are available upon request (journal@neurology.org).
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