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Abstract: It is increasingly recognized that certain fundamental changes in diet and lifestyle 

that occurred after the Neolithic Revolution, and especially after the Industrial Revolution and 

the Modern Age, are too recent, on an evolutionary time scale, for the human genome to have 

completely adapted. This mismatch between our ancient physiology and the western diet and 

lifestyle underlies many so-called diseases of civilization, including coronary heart disease, 

obesity, hypertension, type 2 diabetes, epithelial cell cancers, autoimmune disease, and osteopo-

rosis, which are rare or virtually absent in hunter–gatherers and other non-westernized popula-

tions. It is therefore proposed that the adoption of diet and lifestyle that mimic the beneficial 

characteristics of the preagricultural environment is an effective strategy to reduce the risk of 

chronic degenerative diseases.

Keywords: Paleolithic, hunter–gatherers, Agricultural Revolution, modern diet, western 
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Introduction
The physical activity, sleep, sun exposure, and dietary needs of every living organism 

(including humans) are genetically determined. This is why it is being increasingly recog-

nized in the scientific literature, especially after Eaton and Konner’s1 seminal publication 

in 1985, that the profound changes in diet and lifestyle that occurred after the Neolithic 

Revolution (and more so after the Industrial Revolution and the Modern Age) are too 

recent on an evolutionary time scale for the human genome to have fully adapted.1–27

In fact, despite various alleles being targets of selection since the Agricultural 

Revolution,28–42 most of the human genome comprises genes selected during the 

Paleolithic Era43 in Africa,43–59 a period that lasted from about 2.5 million years ago to 

11,000 years ago.14 Indeed, anthropological and genetic studies suggest that all human 

beings living in Europe, Asia, Oceania, and the Americas share a common African 

Homo sapiens ancestor.47–57 This concept is corroborated by data showing that there 

is less genetic diversity throughout the world’s non-African population than there is 

within Africa itself.44–46,53,57,58

Moreover, many of the selective pressures underlying these postagriculture alleles 

were not induced by changes in sleep, exercise, and diet but rather by pathogens, fatal 

diseases, and harsh environments,28–31,37–39 with a few key exceptions.41,42 One of those 

exceptions pertains to alleles of the LCT gene (which codes for the enzyme lactase-

phlorizin hydrolase [LPH]) that give rise to the phenotype of adult lactase persistence 

(ALP).60 These LPH-encoding alleles were initially selected in populations with a long 

history of milk and dairying, such as north-western Europeans and some sub-Saharan 
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African and Bedouin pastoralists. Today, ALP occurs in about 

35% of the world’s population.60

The impetus for these genetic changes was not to 

increase longevity and resistance to chronic degenerative 

diseases but rather to increase the probability of survival 

and reproductive success.27,61,62 Occasionally, muta-

tions that had positive survival and reproductive value 

sometimes also caused adverse health effects in the 

postreproductive years.4,27,61,62 Furthermore, single gene 

mutations, although relevant for physicians when treat-

ing an individual patient, are imperfect models to prevent 

chronic degenerative diseases whose clinical symptoms 

normally affect the postreproductive years and involve 

numerous genes.61

Importantly, 11,000 years represent approximately 

366 human generations,63 which comprise only 0.5% of 

the history of the genus Homo (Table 1).14,63–65 Indeed, the 

Industrial Revolution and the Modern Age, which mark the 

beginning of the western lifestyle, represent only seven and 

four human generations, respectively (Table 1),14,63–65 and 

were marked by rapid, radical, and still ongoing changes in 

lifestyle and diet,14,65 coupled with improved public health 

measures that greatly reduced mortality in the prereproduc-

tive years (and hence largely eliminated impaired reproduc-

tive fitness as a selection pressure).62,66 As such, it is highly 

unlikely that genetic adaptations that allow us to thrive on a 

western diet and lifestyle have occurred.

Health status of preagriculture  
traditional populations
The idea that modern Homo sapiens are still adapted to an 

ancestral environment is reinforced by data showing that 

hunter–gatherers, and other populations minimally affected 

by modern habits, exhibit superior health markers, body 

composition, and physical fitness compared with industrial-

ized populations, including:

1. Low blood pressure in hunter–gatherers and horticultural-

ists (Table 2)26,67–69 when compared with current optimal 

values defined by health institutions (,120 mm Hg 

and ,80 mm Hg for systolic blood pressure and diastolic 

blood pressure, respectively)70

2. Lack of association between blood pressure and age in 

hunter–gatherers ( Table  3)69 and horticulturalists68 com-

pared with in North Americans and Swedes26,68,70

3. Persisting excellent insulin sensitivity among middle-

aged and older individuals in non-westernized tra-

ditional populations that maintain their ancestral 

lifestyle26,71–81

4. Lower fasting plasma insulin concentrations and higher 

insulin sensitivity (measured by the Homeostatic Model 

Assessment [HOMA] index) in the horticulturalists of 

Kitava (Papua New Guinea) compared with in healthy 

Swedes (Figures 1 and 2, respectively)74

5. Lower fasting plasma leptin in the horticulturalists of Kitava 

and the Ache hunter–gatherer Indians of Paraguay compared 

with in healthy Swedes82 (Figure 3) and North  American 

male distance runners83 (Figure 4), respectively

6. Lower body mass index (BMI) in hunter–gatherers, tradi-

tional pastoralists, and horticulturalists26 compared with in 

westerners.26,84 For instance, as observed by Lindeberg,26 in 

Kitava, 87% of men and 93% of women aged 40–60 years 

had a BMI below 22 kg/m2 and not a single individual in 

this age group was overweight or obese26

7. Lower waist (cm)/height (m) ratio in the horticul-

turalists of Kitava compared with in healthy Swedes 

(Figure 5)82

8. Lower tricipital skinfold (mm) in hunter–gatherers com-

pared with in healthy Americans67 (Figure 6)

Table 1 Historical milestones in human generations14,63–65

Historical milestones Generations % total

Homo habilis 76,667 100.0

Homo erectus 60,000 78.2

Modern Homo sapiens 6666 8.7

Neolithic Revolution 366 0.48

industrial Revolution 7 0.009

Food industry (junk food) and 

physical inactivity (Modern Age)

4 0.005

Table 2 Systolic blood pressure (SBP) and diastolic blood 

pressure (DBP) at age 40–60 years in hunter–gatherers and 

horticulturalists (mm Hg)26,67–69

Population Men Women

SBP DBP SBP DBP

Bushmen 108 63 118 71

Yonomamo 104 65 102 63

Xingu 107 68 102 66

Kitava 113 71 121 71

Table 3 Systolic blood pressure and diastolic blood pressure in 

Yanomamo indians (mm Hg)69

Age (years) Men Women

0–9 93/59 96/62

10–19 108/67 105/65

20–29 108/69 100/63

30–39 106/69 100/63

40–49 107/67 98/62

50+ 100/64 106/64
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 9. Greater maximum oxygen consumption (VO
2
 max) in 

hunter–gatherers and traditional pastoralists compared 

with in average Americans67 (Figure 7)

10. Better visual acuity in hunter–gatherers and other tradi-

tional populations minimally affected by western habits 

compared with in industrialized populations85

11. Better bone health markers in hunter–gatherers com-

pared with in western populations and even traditional 

agriculturalists26,86–98

12. Lower fracture rates in non-westernized populations 

compared with in western populations.26,96–99

Another line of evidence supporting the superior health 

markers of hunter–gatherers and other traditional populations 

comes from the historical records of explorers, adventurers, 

and frontiersmen, which invariably described the populations 

they encountered as being healthy, lean, fit, and free of the 

signs of chronic degenerative diseases.26 But perhaps even 

more important than these observations are the medical and 

anthropological reports showing a low incidence of chronic 

degenerative diseases such as metabolic syndrome and type 2 

diabetes,26,67,73,74,100 cardiovascular disease (CVD),26,65,67,68,100–112 

cancer,26,67,113–118 acne,119 and even myopia85 in hunter– gatherers, 

traditional pastoralists, and horticulturalists compared with in 

western populations26,65,67,85,100,108,109,113,114,119,120 and even ancient 

Egyptians67,114,121–123 and medieval Europeans.114

Counterarguments
It has been argued that traditional populations may have been 

genetically protected against the chronic degenerative diseases 

that occur in industrialized countries, yet when non-westernized 

individuals adopt a more contemporary lifestyle, their risk for 

chronic degenerative diseases is similar or even increased com-

pared with modern populations.26,67,78–80,108,109,124–144 Further, when 

they return to their original traditional lifestyle, many disease 

markers or symptoms return to normal.81,145 These data 

demonstrate that the superior health markers, body composition, 

and physical fitness of hunter–gatherers and other populations 

minimally affected by modern habits are not due primarily to 

genetics but first and foremost to the environment. These studies 

also indicate that few or no genetic adaptations have occurred 

to protect any population from chronic diseases that are elicited 

by modern diet and lifestyles.

Indeed, two different individuals when exposed to the 

same modern environment (eg, western diet, physical 

inactivity, insufficient and inadequate sleep, chronic psy-

chological stress, insufficient or excessive sun exposure, 

use of recreational drugs, smoking, pollution) will prob-

ably express a suboptimal phenotype.27,65,146,147 This may or 

may not be considered pathological, depending on genetic 

variants (eg, haplotypes, single nucleotide polymorphisms, 

microsatellites, simple sequence repeats, insertion/deletion, 

copy number variations) and differences in gene expression 

regulation (such as epigenetic variations).27,62,146,148

Another common counterargument is the short average 

life expectancy at birth of hunter–gatherers. The problem with 

this marker is that it is influenced by fatal events (eg, acci-

dents, warfare, infections, exposure to the elements) and 

childhood mortality. Today, average life expectancy is higher 

not because of a healthier diet and lifestyle but owing to bet-

ter sanitation, vaccination, antibiotics, quarantine policies, 

medical care, political and social stability, and less physical 

 trauma.66 Moreover, Gurven and Kaplan,149 in a recent assess-

ment of the mortality profiles of extant hunter–gatherers for 

which sufficient high-quality demographic data exist, con-

cluded that “modal adult life span is 68–78 years, and that it 

was not uncommon for individuals to reach these ages”.

Of more importance, these individuals reached age 

60 years or beyond without the signs and symptoms of chronic 

degenerative diseases that afflict the majority of the elderly in 

industrialized countries.66 Furthermore, in western countries, 

various illnesses and conditions, such as obesity, type 2 dia-

betes, gout, hypertension, coronary heart disease (CHD), and 

epithelial cell cancers, which are rare or virtually absent in 

hunter–gatherers, horticulturalists, and traditional pastoralists, 

are now increasing in younger age groups.26,64–66 Finally, the 

fossil record suggests that when hunter–gatherer populations 

made the transition to an agricultural pattern of subsistence, 

their health status and lifespan decreased.26,109,150

The ancestral environment
With the help of anatomical, biomechanical, and isotopic 

analyses of various hominin skeletons, the archaeological 
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Figure 1 Fasting plasma insulin (lU/mL) in Kitava horticulturalists versus in healthy 

Swedes.74
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and geological evaluation of their habitats, and ethnographic 

studies of various hunter–gatherer societies (whose diet and 

lifestyle resembled the Palaeolithic diet and lifestyle), it was 

concluded38,61,64,65,108,151–157 that, despite the existence of dif-

ferent diets and lifestyles, which varied due to differences 

in geography, ecological niche, season, and glaciations, they 

all had the following characteristics:

•฀ Regular sun exposure38,151 (except for the Inuit, whose 

very high intake of vitamin D3 from fish and marine 

mammals158,159 may have rendered the lack of ultraviolet-

stimulated cutaneous vitamin D synthesis less relevant)

•฀ Sleep patterns in synch with the daily variation in light 

exposure152

•฀ Acute as opposed to chronic stress160

•฀ Regular physical activity, as this was required to obtain 

food and water, to escape from predators, for social 

interaction, and to build shelters146,147,153

•฀ Lack of exposure to man-made environmental 

pollutants160

•฀ Universal fresh (generally unprocessed) food sources as 

depicted in Table 4.14,64,65,154,155,157

The Neolithic and industrial 
revolutions and their consequences
The Agricultural Revolution began about 11,000 years 

ago in the Middle East, later spread to other regions of the 
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globe,14,65,154 and drastically altered the diet and lifestyle that 

had shaped the human genome for the preceding 2 million 

plus years. Some of the more significant dietary changes 

were the use of cereal grains as staple foods, the introduction 

of nonhuman milk, domesticated meats, legumes and other 

cultivated plant foods, and later widespread use of sucrose 

and alcoholic beverages.14,65

Nevertheless it was the Industrial Revolution (with 

the widespread use of refined vegetable oils, ref ined 

cereal grains, and refined sugars)14,65 and the Modern Age 

(with the advent of the “junk food” industry, generalized 

physical inactivity, introduction of various pollutants, 

avoidance of sun exposure, and reduction in sleep time 

and quality coupled with increased chronic psychological 

stress)14,38,65,146,152,153,160 that brought about the most disrup-

tive and maladaptive changes, which may have serious 

pathophysiological consequences. For instance, chronic 

psychological stress, environmental pollution, and smoking 

are associated with low-grade chronic inflammation,161–165 

which is one of the main causes of insulin resistance.161,164,165 

Moreover, low-grade chronic inflammation is involved in 

all stages of the atherosclerotic process166 and is being 

increasingly recognized as a universal mechanism in 

various chronic degenerative diseases, such as autoimmune 

diseases, certain cancers, neuropsychatric diseases, and 

osteoporosis.27,65,160,167 Furthermore, some environmental 

pollutants, including pesticides and various industrial 

chemicals, may act as endocrine disruptors, hence being 

suspected of playing a causal role in hormone-dependent 

cancers (such as breast and prostate cancer),168 insulin 

resistance169 and type 2 diabetes,169,170 obesity,171 and 

CVD.170,172

Insufficient sleep (fewer than 6 hours per 24-hour day) 

is also associated with low-grade chronic inflammation 

and worsening insulin resistance,165,173 as well as increased 

risks for obesity, type 2 diabetes, and CVD.165,174,175 This 

information is relevant in light of a recent cross-sectional 
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Table 4 Foods consumed during the Paleolithic era14,64,65,154,155,157

Foods available Foods not available

Insects, fish, shellfish and other  
marine animals, reptiles, birds,  

wild terrestrial mammals and eggs

Dairy (except for human milk  

during weaning)

Plant leaves, seaweed, sea  

grasses and algae

Cereal grains (with the exception  

of occasional intake in the upper 

Palaeolithic)

Roots Legumes (except certain varieties  

that were consumed seasonally)

Tubers isolated sugar

Berries and wild fruits isolated oils

Nuts and seeds Alcohol

Honey (occasional intake) Refined salt (even sea salt would  
be available only for shore-based 

populations who may have dipped 

their food in sea water)
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may progressively reduce plasma 25[OH]D3 concentrations 

in humans.

Reduced plasma 25[OH]D concentrations may have 

serious health consequences. Indeed, there is an impressive 

body of evidence associating low vitamin D status (measured 

by plasma 25[OH]D) with an increased incidence of vari-

ous types of cancer (including breast, prostate, and colon), 

autoimmune diseases, infectious diseases, muscle weakness, 

osteoporosis, hypertension, insulin resistance, cardiovascular, 

and all-cause mortality.151,177–179

It should be mentioned that, except for fatty ocean 

fish, there is very little vitamin D in commonly consumed 

natural (ie, not artificially fortified) foods.177 As such, 

sensible sun exposure (adjusted to skin type, climate, time 

of year, and geographic region) and/or supplementation 

with vitamin D may often be pertinent in order to maintain 

serum 25[OH]D above 30 ng/mL177 (or preferably above 

45 ng/mL).179

Another important lifestyle change is physical inactivity, 

which Booth et al146 call “an ancient enemy”. They make a 

compelling case for its possible causal role in insulin resis-

tance, dyslipidemia, obesity, hypertension, type 2 diabetes, 

coronary artery disease, angina, myocardial infarction, 

congestive heart failure, stroke, intermittent claudication, 

gallstones, various types of cancer, age-related cognitive 

dysfunction, sarcopenia, and osteopenia, among other 

diseases.

Regarding dietary changes, it should be mentioned 

that, in the US, dairy products, cereal grains (especially the 

refined form), refined sugars, refined vegetable oils, and 

alcohol make up to 70% of the total daily energy consumed.65 

As pointed out by Cordain et al,65 these types of foods would 

have contributed little or none of the energy in the typical 

preagricultural hominin diet. These modern foods introduced 

during the Neolithic, Industrial, and Modern eras have 

adversely affected the following nutritional characteristics.

Micronutrient density
Calorie per calorie, fish, shellfish, meat, vegetables, and 

fruit present a higher micronutrient density than does milk 

(with the exception of calcium) and whole cereal grains (and 

several orders of magnitude higher than refined grains).65 

Moreover, vegetable oils and refined sugars represent more 

than 36% of the energy in a typical US diet and are essen-

tially devoid of micronutrients (except for vitamin E in some 

vegetable oils).65

Therefore, current food choices,65,154,180,181 together 

with soil depletion182–186 and modern food transport and 

population-based study showing that 28% of US adults 

sleep 6 or less hours per 24-hour period.175 Moreover, 

social and work pressures, as well as exposure to artificial 

light at atypical biologic times (a very recent phenomenon 

in human evolutionary history), induce a disruption of the 

normal circadian rhythm, which is believed to play a key role 

in various diseases.176 As Vgontzas et al173 point out: “the 

idea that sleep or parts of it are optional should be regarded 

with caution”.

Perhaps even more important is the chronic vitamin 

D deficiency brought about by novel cultural and geo-

graphical changes in human behavior. As Homo sapi-

ens left equatorial Africa and begun to occupy higher 

latitude regions, where the proportion of ultraviolet B 

wavelengths is decreased and of ultraviolet A vitamin 

D-destructive wavelengths is increased, previtamin D3 

production became compromised (especially in the winter 

time).38 This may have increased the incidence of rick-

ets, muscle weakness, and bacterial and viral infections, 

which impaired reproductive fitness and increased early 

mortality.38 Thus, it has been hypothesized that these were 

the main selective pressures for lighter skin pigmenta-

tion, which is a recent adaptation in human evolution-

ary history.38 Although natural selection for lighter skin 

pigmentation may have reduced the prevalence of rickets, 

muscle weakness, and bacterial and viral infections, it may 

not have assured an optimal vitamin D status, given the 

many functions now attributed to 1,25-dihydroxyvitamin 

D (1,25[OH]2D), the existence of vitamin D receptors, 

and the occurrence of 1,25[OH]2D synthesis in various 

cells.177

Today, vitamin D status is further compromised by 

migrations of people with dark skin (adapted to equatorial 

and tropical regions) to higher latitudes, and by air pollu-

tion, ozone, clothing, indoor living and working habits, and 

sun protection.38,177 Other factors contributing to a lower 

vitamin D status in humans include certain medications, 

diseases, and conditions (such as obesity, liver and kidney dis-

ease, and conditions that affect fat absorption),177 and perhaps 

also modern dietary habits, such as a high intake of cereal 

grains. Epidemiological studies of populations consuming 

high levels of unleavened whole grain breads show rickets 

and vitamin D deficiency to be widespread, and high cereal 

diets can induce vitamin D deficiency in animals, including 

primates.154 Moreover, as pointed out by Cordain,154 a study of 

radiolabelled 25-hydroxyvitamin D3 (25[OH]D3) in humans 

consuming 60 g of wheat bran on a daily basis for 30 days 

showed an increased fecal elimination of 25(OH)D3, which 
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stocking,187–189 are perhaps the main reasons why a significant 

percentage of the North American population does not reach 

the recommended daily allowance (RDA) of various vitamins 

and minerals.190,191 This problem is exacerbated by culinary 

methods,192–197 smoking (which causes vitamin C  depletion198), 

and the use of certain foods as staples. For instance, using 

cereal grains as staple foods may compromise the status 

of various nutrients, such as vitamin B6 (because of low 

bioavailability154), biotin (perhaps because of antinutrients 

eliciting a depression of biotin metabolism154), magnesium, 

calcium, iron, and zinc (because their phytate content reduces 

intestinal absorption of these minerals154,180).

Even moderate micronutrient deficiency leads to a wide 

spectrum of pathophysiological events, and it is an important 

risk factor for several chronic degenerative diseases.65,199–206 

For instance, data from the National Health and Nutrition 

Examination Survey 2001–2002 show that magnesium intake 

for more than 50% of US adults was below the estimated 

average requirement.190 Multiple epidemiologic studies 

associate magnesium deficiency with an increased risk of 

metabolic syndrome201,202 and CVD,203–205 and this causal 

relationship is supported by intervention studies.206–209

Other nutrients whose status is compromised in a typical 

western diet are zinc, folate, and vitamins C, E, and K,190,199,200 

the latter (especially the K2 form) gaining widespread accep-

tance as a possible player in CVD. Epidemiological studies 

associate higher vitamin K2 intake with a reduced CHD and 

coronary calcification incidence.210–212

Folic acid deficiency (which would not constitute a 

problem in hunter–gatherer diets that included green leafy 

vegetables and organ meats65) is also a case for concern in 

terms of CVD prevention, as it leads to an increase in plasma 

homocysteine, which, although no consensus has been 

reached, appears to be a CVD risk factor because it induces 

damage of the endothelial cell wall and abnormal arterial lipid 

deposition, reduces vasorelaxation, and impairs fibrinolytic 

action.213 Perhaps more important, folate, along with vitamin 

B6 and B12, choline, betaine, and methionine deficiency in 

utero, may result in an altered epigenetic programming,62 

which ultimately leads to endothelial dysfunction,214 among 

other pathophysiological consequences.62,213

Sodium/potassium ratio
The average potassium content (2620 mg/d) of the typi-

cal US diet is substantially lower than its sodium content 

(3271 mg/d), which is due to the use of table salt, a high 

intake of processed foods (with added salt), and the displace-

ment of potassium-rich foods (eg, fruit and vegetables) by 

potassium-poor foods, such as vegetable oils, refined sugars, 

whole grains, and dairy products.65

This inversion of potassium and sodium concentrations 

is a recent event in human evolutionary history.63–65,215 It is 

believed to contribute to hypertension, stroke, kidney stones, 

osteoporosis, gastrointestinal tract cancers, asthma, exercise-

induced asthma, insomnia, air sickness, high-altitude sick-

ness, and Meniere’s syndrome.65

Net acid load
After digestion, absorption, and metabolism, nearly all foods 

release either acid or base into the systemic circulation. 

Dairy products (especially hard cheeses), cereal grains, salt 

(because of the chloride ion), meats, fish, shellfish, and eggs 

are net acid yielding, whereas fresh fruit, vegetables, tubers, 

roots, and nuts are net base yielding.65,215

It was recently estimated that the diet of East African Homo 

sapiens during the Paleolithic era was predominantly net base 

producing,216 as opposed to the typical western diet, which is 

net acid yielding65,215 and hence leads to a chronic, low-grade 

metabolic acidosis, which elicits loss of calcium ions caused by 

mobilization of alkaline salts from bone to titrate some of the 

retained hydrogen ions.215 This calcium is lost in the urine with-

out a compensatory increase in gastrointestinal absorption.215 

Chronic, low-grade metabolic acidosis also induces the release 

of amino acids, including glutamine and amino acids that the 

liver can convert to glutamine.215 Glutamine is the major nitro-

gen source used by the kidney for synthesis of ammonia, thereby 

increasing the excretion of acid (as ammonium ion) in the urine 

and mitigating the severity of the acidosis.215  Accordingly, in 

the long term, a net acid-yielding diet may increase the risk for 

osteoporosis and sarcopenia.65,215

Furthermore, a net acid-yielding diet increases not only 

calcium excretion217 but also magnesium excretion.218 Finally, 

there is evidence that chloride (a key determinant of the 

diet’s net acid load219) may be a major cause of salt-induced 

hypertension.215

On a final note, this chronic, low-grade metabolic acidosis 

is exacerbated in elderly people who experience a decline 

in glomerular filtration rate and hence have a decreased 

renal acid excretion capacity,65 which is why correcting 

diet-induced chronic metabolic acidosis in this age group 

is even more important. Hence, we propose as a solution 

to this chronic, low-grade metabolic acidosis a decreased 

intake of sodium chloride and an increased consumption of 

unprocessed fruit and vegetables, at the expense of refined 

vegetable oils, refined sugars, cereal grains, hard cheeses, 

and processed foods.
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Antinutrient content and inflammatory  
potential
Alterations in gut microbiotica220 and increased intestinal 

permeability221 are possible causes of low-grade chronic 

inflammation. Indeed, when the intestinal barrier is dis-

rupted, it allows increased passage of gut luminal antigens 

derived from food, bacteria, and viruses221 into periph-

eral circulation (endotoxemia222). One particular antigen, 

lipopolysaccharide (LPS), from Gram-negative bacteria, is 

routinely used in animal experiments to induce acute immune 

stimulation.223 When LPS binds Toll-like receptor (TLR)4, 

it triggers the release of nuclear factor kappa-B (NF-kb) 

dimers that translocate into the cell nucleus, where they 

bind to DNA target sites, thereby inducing the expression of 

genes that code for various inflammatory enzymes, cytokines 

and chemokines, cell adhesion molecules, antiapoptotic and 

angiogenesis proteins, inducible nitric oxide synthase, and 

matrix-degrading enzymes224 that are involved in the athero-

sclerosis process.19,166,222,224  Moreover, these proinflammatory 

cytokines may disrupt insulin signaling, promoting insulin 

resistance.164 So a chronic low-grade endotoxemia may lead 

to low-grade chronic inflammation,222 which is at the root of 

various disorders.160,165–167,222,224,225

In this regard, recent evidence shows that certain western 

foods (dairy cream, butter, egg muffins, sausage muffins, 

hash browns, and sugar) allow increased passage of luminal 

antigens into peripheral circulation, leading to TLR2 and 

TLR4 activation.222,226–228 Interestingly, one study found that 

these events were prevented by a high intake of orange juice 

(perhaps because it contains flavonoids with reactive oxygen 

species [ROS] and inflammation-suppressive activities, such 

as naringenin and hesperidin),228 which opens the possibility 

that other fruit and vegetables may elicit similar effects.

Some factors contributing to increased intestinal per-

meability include nonsteroidal anti-inflammatory drugs,221 

antacids,221 changes in gut microbiota,221 alcohol,229 lectins,221 

saponins,230–235 and gliadin.236

It was recently found that gliadin, a prolamine in wheat 

(which is a novel food in the human diet in evolutionary 

terms65), increases gut permeability by means of zonulin 

production in the gut enterocytes.236 Zonulin causes dis-

ruption of the tight junction proteins that maintain the gut 

barrier function and leads to increased gut permeability.237 

In addition, gliadin (which is resistant to heat and digestive 

enzymes154) is able to interact with gut-associated lymphoid 

tissue, stimulating the innate immune system in celiac and 

nonceliac individuals (whereas the adaptive immune response 

is exclusive of celiac patients).238,239 Gliadin may increase 

intestinal permeability and hence induce the production of 

proinflammatory cytokines, independent of one’s genetic 

predisposition to celiac disease (although, as expected, these 

effects are more marked in celiac disease).236,238–240 As such, 

we can deduce that chronic consumption of wheat, as hap-

pens in western countries, may lead to low-grade chronic 

 inflammation. Of relevance, wheat gluten has been implicated 

in multiple sclerosis,154,241,242 type 1 diabetes,154,243 psoriasis,244 

immunoglobulin (Ig)A nephropathy,154 and rheumatoid 

arthritis (RA).154,221 Moreover, rectal mucosal inflammatory 

response after gluten challenge has been observed in patients 

with Sjögren’s syndrome.245 Furthermore, a gluten-free vegan 

diet over 1 year significantly reduced disease activity and 

oxidized low-density lipoprotein colesterol (LDL-C) in RA 

patients while raising natural atheroprotective antibodies 

against phosphorylcholine (anti-PC IgM).246 This may be 

relevant, as anti-PC IgM is negatively associated with ath-

erosclerosis development in hypertensive individuals,247 and 

low levels of anti-PC IgM independently predict development 

of CVD.247 Interestingly, compared with in healthy Swedes, 

anti-PC IgM has been found to be significantly higher in the 

horticulturalists of Kitava,248 who, at the time of measure-

ment, followed a diet composed of fish, coconut, fruit, and 

tubers (and hence devoid of cereal grains, dairy products, 

separated fats, and sugars)248 and were virtually free of auto-

immune diseases, osteoporosis, obesity, insulin resistance 

and type 2 diabetes, CVD, and acne.26,74,82,112,119

Similar to gliadin, many plant lectins are also a recent 

introduction to the human diet.154 Lectins are omnipresent 

proteins found in the plant kingdom and likely evolved as 

toxic defensive mechanisms to ward off predators.100 Most of 

these glycoproteins are believed to be benign and nontoxic to 

humans, but the ones that can bind gut tissue may be prob-

lematic, such as those found in cereal grains, legumes, and 

certain solanaceous plants (tomatoes and potatoes).154,221,249 

Most plant lectins are relatively resistant to heat154 (unless 

cooked by pressure cooking250) and digestive enzymes154,221 

and have been found intact in the gastrointestinal tracts of 

both animals and humans.154,221 Furthermore, in animal mod-

els, lectins from legumes and cereal grains disrupt intestinal 

barrier and immunological function when they bind surface 

glycans on gut epithelial cells, causing cellular disruption 

and increasing gut permeability.221 They may also facilitate 

the growth of Gram-negative bacteria strains,221 which could, 

in theory, contribute to endotoxemia221 and hence low-grade 

inflammation through TLR4 activation by LPS.222 Perhaps 

even more importantly, wheat germ agglutinin (WGA) 

(a lectin in wheat) and phytohemagglutinin (PHA) (a lectin 

www.dovepress.com
www.dovepress.com
www.dovepress.com


Research Reports in Clinical Cardiology 2011:2 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

23

The western diet and lifestyle

found in beans) are rapidly transported across the gut wall 

into systemic circulation of animals,221 and tomato and peanut 

lectins have been found in systemic circulation in humans 

following consumption of tomato juice and roasted peanuts, 

respectively.249,251

These findings might be important, as virtually every 

cell in the body and every extracellular substance can be 

bound by lectins because of their ability to bind glycosy-

lated structures.154 Of note, in vitro data have shown that 

WGA can bind insulin and leptin receptors,154,252 which 

could theoretically elicit insulin and leptin resistance.26,100,154 

Moreover, lectins from lentils, kidney beans, peas, and 

wheat potently increase the production of inflammatory 

cytokines (interleukin [IL]-12, IL-2, and interferon γ) in 

cell cultures,253 and WGA also stimulates production of 

tumor necrosis factor (TNF)-α and IL-1β in vitro.254 Fur-

thermore, WGA and PHA induce the production of metallo-

proteinases (MMPs) in leukocytes,255,256 and WGA directly 

causes the activation of platelets and potently increases 

their aggregation.257 This may be relevant because rupture 

of the fibrous cap and formation of the blood clot, which 

is mediated by MMPs and platelets, is a crucial mecha-

nism involved in thrombus production. In this regard and 

although these chain of events have not to our knowledge 

been examined in vivo, it should be mentioned that peanut 

oil has unexpectedly been shown to be highly atherogenic 

in rats, rabbits, and primates,258 and reduction of its lectin 

content decreases its atherogenicity.258 Interestingly, one of 

the very few human-controlled dietary intervention trials 

with hard endpoints, DART (Diet And Reinfarction Trial), 

found a tendency toward increased cardiovascular mortal-

ity in the group advised to eat more fiber, the majority of 

which was derived from cereal grains.259 Of relevance is that 

this nonsignificant effect became statistically significant 

after adjustment for possible confounding factors (such as 

medication and health state).260

Another class of antinutrients that may increase intestinal 

permeability in humans and hence endotoxemia are saponins, 

which are present in some cereal grains, legumes, quillaja, 

alfalfa sprouts, and solanaceous plants such as potatoes and 

green tomatoes.230–235 These steroid glycosides or triterpe-

noids are formed by a sugar compound (glucuronic acid, glu-

cose, or galactose, among others) and an aglycone (nonsugar 

molecule) portion.230,231 By binding the cholesterol molecule 

on gut cell membranes, the aglycone portion disrupts the gut 

barrier and increases intestinal permeability.231

Unfortunately, the effects of lectins and saponins on 

intestinal permeability, endotoxemia, and inflammation have 

been poorly studied in humans to allow us to draw significant 

conclusions.

Novel food processing procedures, such as extreme 

heating, irradiation, ionization, pasteurization, and steriliza-

tion, may also promote low-grade chronic inflammation by 

leading to the nonenzymatic glycation and oxidation of pro-

teins and lipids in common consumed foods.261 This complex 

and heterogeneous group of compounds, called advanced 

glycation end products (AGEs) and advanced lipid oxida-

tion end products (ALEs), once partially absorbed into the 

systemic circulation may have deleterious health effects261 

by direct modification of proteins and lipids262,263 (such as 

LDL glycation and oxidation, for instance) and perhaps 

also indirectly via the receptor for AGEs (RAGE).261,262 Of 

relevance to chronic degenerative diseases is the possible 

interaction of AGEs and ALEs with RAGE, which may acti-

vate several intracellular signal transduction pathways that 

lead to various downstream events, such as the activation 

of NF-kb and activator protein-1 transcription factors,261,262 

which increases the expression of endothelin-1, angiotensin 

II, adhesion molecules, inflammatory cytokines, and plasmin 

activator inhibitor-1.261,262

Indeed, in diabetic patients, a high AGE intake was 

associated with higher levels of C-reactive protein (CRP), 

TNF-α, and vascular cell adhesion molecule (VCAM-1).261 

In contrast, low-AGE diets reduce serum AGE levels, as 

well as markers of inflammation and vascular dysfunction 

(CRP, TNF-α, and VCAM-1) in diabetic and renal failure 

patients.261,262 The effects of dietary AGEs and ALEs are obvi-

ously more pronounced in diabetics (who present an enhanced 

formation of endogenous AGEs due to hyperglycemia)261 and 

kidney failure patients (who have an impairment of AGE 

renal excretion).261 Nevertheless, in a cross-sectional study 

of healthy subjects of different ages, dietary AGE intake was 

an independent determinant of high-sensitivity CRP and 

of circulating AGEs, which, in turn, were associated with 

endogenous lipid peroxidation and HOMA index.263

AGE and ALE content in food is greatly influenced by 

processing and cooking conditions, including temperature, 

time, and moisture.264 Consequently, the avoidance of pro-

cessed foods and the use of steaming, poaching, boiling, 

and stewing as the main cooking methods, instead of frying, 

broiling, and grilling, may be a sensible way to decrease the 

formation of these compounds.261,264 Of interest, tobacco, by 

being processed in the presence of reducing sugars, represents 

another source of exogenous AGEs.262 Indeed, circulating 

AGE levels have been found to be significantly higher in 

smokers than in nonsmokers.265
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Glycemic load, fiber, and fructose
During the Paleolithic period, most of the carbohydrate 

(CHO) sources were wild fruit, berries, vegetables (typically 

presenting low glycemic index [GI]26), and sometimes tubers, 

with cereal and honey intake being scarce.14,26,65

Today, most CHO come from processed foods such as 

refined sugars and refined cereal grains.65 Even whole grains 

possess a higher glycemic load (GL) than does most unpro-

cessed fruit and vegetables.65 The GL takes into account 

both the GI and the amount of CHO in a given serving of 

a food. It is estimated that the GL of Paleolithic diets was 

significantly lower than the GL of western diets.65

This observation is relevant because chronic adop-

tion of a high-GL diet may lead to hyperglycemia and 

hyperinsulinemia,266 which may contribute to dyslipidemia 

(elevated serum triglycerides, small-dense LDL-C, and 

reduced high-density lipoprotein [HDL]-C),266 hypertension,267 

elevated plasma uric acid,267 and insulin resistance,266 the pri-

mary metabolic defect in metabolic syndrome.266 Moreover, by 

eliciting postprandial hyperglycemia, it may increase oxida-

tive stress, proinflammatory cytokines, protein glycation, and 

procoagulant activity, thereby adversely affecting endothelial 

function, among other pathophysiological effects.266,268–270 

Indeed, a recent meta-analysis of 37 prospective cohort stud-

ies suggests that diets with a high GI, high GL, or both may 

increase the risk of type 2 diabetes, heart disease, and gallblad-

der disease.270 Furthermore, intervention studies show that a 

low GL diet may be an effective strategy for overweight and 

obesity271,272 and confer better glucose, insulin, lipoprotein, 

and inflammatory cytokine profiles in overweight and type 

2 diabetes patients.268 Finally, the chronic adoption of a high 

GL diet may lead to a number of hormonal changes (such 

as elevated insulin-like growth factor-1 [IGF-1]/insulin-like 

growth factor binding protein-3 [IGFBP-3] ratio and increased 

ovarian and testicular androgen synthesis, coupled with 

decreased sex hormone-binding globulin hepatic synthesis) 

that ultimately may result in polycystic ovary syndrome, 

epithelial cell cancers, acne, and juvenile myopia, among 

other diseases.85,119,266,273

Another nutritional change is fiber intake. Most Paleo-

lithic diets had more fiber (.30 g/d), generally from fruit and 

vegetables,65 than did the typical western diet, where most of 

the fiber derives from cereal grains.65 Fruit and vegetables 

have, on a calorie per calorie basis, two and eight times more 

fiber than do whole grains.65 In addition, fruit and vegetables 

typically contain soluble fiber, whereas much fiber in cereal 

grains is of the insoluble type.26

This may all be relevant because dietary fiber, in particu-

lar soluble fiber, increases satiety,274,275 reduces postprandial 

free fatty acids,275 and contributes to better glycemic con-

trol (perhaps through a glucagon-like peptide-1 effect).275 

 Furthermore, dietary fiber appears to play an important 

role in intestinal health, as suggested by Higginson and 

Oettlé276 in the 1960s. They observed that in Africa, where 

“a large amount of roughage is consumed”, colon cancer 

and constipation were rare, whereas they were common 

diseases in western countries. This was also observed by 

Calder et al,277 who reported that a shift from rural to urban 

living and at the same time from a traditional to a westerndiet 

(containing a low amount of fiber) and lifestyle in Kenya 

was associated with diverticulitis and colon carcinoma. 

Today, there is an increasing recognition and understanding 

of the complex role that fiber plays in maintaining intestinal 

health that goes beyond the “traditional” increased bulk and 

stool frequency effect. For instance, dietary fiber fermenta-

tion in human intestine produces short-chain fatty acids, 

mainly acetic acid, propionic acid, and butyric acid,278 which 

exert several beneficial effects on the intestinal tract. For 

instance, butyrate and propionate, by inhibition of histone 

deacetylase, are able to block the generation of dendritic 

cells (DCs) from bone marrow stem cells, thereby inhibit-

ing the inflammatory response mediated by DCs.279 Also, 

butyrate controls the assembly of epithelial cell tight junc-

tions, leading to decreased intestinal permeability,280 which 

may be central to many inflammatory diseases, as explained 

previously. Even more relevant, butyrate reduces bacterial 

translocation into peripheral circulation independently of 

intestinal permeability,281 most likely through decreased 

NF-kB activation.281

Although whole grains are increasingly being recom-

mended, in part to increase fiber intake, given its potential 

adverse effects already discussed, it would perhaps be 

prudent that most of the dietary fiber came from fruit and 

vegetables.

Perhaps even more important, the introduction of refined 

sugars and, more recently, of high fructose corn syrup 

(HFCS), has increased fructose intake to unprecedented high 

levels.65,135 Mounting evidence suggests that this dietary shift 

may be an important player in obesity, insulin resistance, dys-

lipidemia, gout, hypertension, kidney disease, and nonalco-

holic fatty liver disease.65,135,266,282,283 Although fruit is a natural 

source of fructose, it also contains vitamin C, which offsets 

some of the adverse effects of fructose,135 and various other 

nutrients, as well as fiber. As such, consuming unprocessed 

www.dovepress.com
www.dovepress.com
www.dovepress.com


Research Reports in Clinical Cardiology 2011:2 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

25

The western diet and lifestyle

fruit is not equivalent to consuming pure fructose, sucrose, 

or HFCS.

The simple fact that fructose presents a low GI,266 but yet 

because of its unique metabolism135,266 may have numerous 

adverse effects, combined with the fact that cereal grains and 

isolated sugars are the primary high-GL foods in the western 

diet,65 suggests that the historical focus on the GI and GL 

is incomplete and has to account for fructose and, perhaps 

more important, the food source of CHO.

Another food group that was not part of Paleolithic diets 

but is considered a staple today is dairy.65 Milk, yoghurt, 

and some lactose-containing cheeses, despite having a low 

GL, elicit a very high insulin response.284–288 The implica-

tions of these findings are not entirely known, because 

the epidemiological evidence is conflicting regarding 

the association of milk and dairy, insulin resistance, and 

metabolic syndrome,289–294 but a small dietary intervention 

study in young boys observed an increase of 103% and 

75% in fasting plasma insulin concentrations and relative 

insulin resistance, respectively, after 7 days on a high-

milk diet.288 Furthermore, epidemiologic and intervention 

studies in children and adults demonstrate that cow’s milk 

significantly increases plasma levels of IGF-1 and, perhaps 

more important, the IGF-1/IGFBP-3 ratio.295 Moreover, 

milk contains various hormones and growth factors296–300 

that may have relevant implications for chronic degenera-

tive diseases. Indeed, epidemiologic evidence suggests that 

milk may be implicated in acne273,300 and epithelial cell 

cancers,295 particularly prostate cancer.300 Most of these 

adverse effects are more likely to manifest in the postrepro-

ductive years and, as such, would not negatively affect the 

selection of ALP-associated alleles. Indeed, as indicated 

previously, genes that are important for early reproductive 

success can be selected despite potentially detrimental 

effects subsequent to their continued expression in later 

life,301 which is why ALP should not be viewed as genetic 

protection against potential adverse effects derived from 

long-term dairy intake.

It should be mentioned that reactive monosaccharides 

such as glucose and especially galactose (from dairy)302 and 

fructose303 (which are much more reactive than glucose)302,303 

lead to AGE production and accumulate intra- and 

 extracellularly.303 Moreover, chronic hyperglycemia is a well-

known accelerator of endogenous AGE production.261 In this 

regard, the chronic consumption of a high intake of sucrose, 

fructose, and galactose and/or the adoption of a high GL diet 

may significantly contribute to the formation of AGEs.

It can therefore be concluded that an increase in diet’s GL 

and insulinotropic potential, coupled with a higher fructose 

(and possibly galactose) intake and a reduction in vitamin C 

and dietary fiber consumption, may be another cause of the 

high incidence and prevalence in industrialized countries of 

epithelial cell cancers, obesity, metabolic syndrome, gout, 

CHD, acne, myopia, and various gastrointestinal problems, 

including constipation, irritable bowel syndrome, and 

diverticulitis.

Macronutrient distribution
The percentage of total food energy (en%) derived from 

macronutrients in Paleolithic diets would typically be 

different from current official dietary guidelines (protein = 15 

en%; CHO = 55–60 en%, and dietary fat # 30 en%).65 

 Cordain et al155 estimated that the diets of historically 

studied hunter–gatherer populations were higher in protein 

(19–35 en%), lower in CHO (22–40 en%), and equivalent or 

even higher in dietary fat (28–58 en%).

Even though the RDA for daily protein is 0.8 g/kg of 

bodyweight,304 there is evidence that athletes need higher 

amounts (in sports medicine, protein intake of 1.4–2 g/kg/d is 

increasingly being recommended305). The elderly also need a 

higher protein intake to prevent or attenuate sarcopenia306 and 

osteopenia,307–309 because dietary protein increases calcium 

absorption307,308 and has an anabolic effect on muscle305,306 and 

bone cells309,310 (especially in the context of a net base- yielding 

diet310). Moreover, high-protein diets (.20% of caloric 

intake65) have been shown to improve dyslipidemia65,108,109 

and insulin sensitivity65,81,108 and are potential effective strat-

egies for improving obesity,65,271,311 metabolic syndrome,65 

and hypertension.65,312 Furthermore, a long-term high-protein 

intake does not appear to adversely affect renal function 

in individuals without pre-existing kidney disease.313–316 

 Nevertheless, there is a hepatic urea synthesis limit, which 

lies between 2.6 g/kg/d and 3.6 g/kg/d.155

Regarding the lower CHO content of preagricultural diets, 

it should be mentioned that mounting evidence suggests 

that a reduced-CHO diet may be superior to a western-type 

low-fat, high-CHO diet, especially in metabolic syndrome 

patients, because it may lead to better improvement in insu-

lin resistance, postprandial lipemia, serum triglycerides, 

HDL-C, total cholesterol/HDL-C (TC/HDL-C) ratio, LDL 

particle distribution, apolipoprotein (apo)B/apo A-1 ratio, 

postprandial vascular function, and certain inflammatory 

biomarkers (such as TNF-α, IL-6, IL-8, MCP-1, E-selectin, 

ICAM, and PAI-1).317,318 Nevertheless, because a low-CHO 
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diet is obviously lower in sugars (such as sucrose and 

fructose) and cereal grains and is often higher in protein, 

it is unlikely that all of its positive effects can be attributed 

solely to CHO restriction.

The concern that adopting a preagriculture-type diet may 

encourage a higher intake of dietary fat with a consequent 

increase in CVD risk is not justifiable, because the absolute 

amount of dietary fat consumed is probably much less impor-

tant than is the type of fat consumed.24,108,319 For instance, the 

traditional diet of Crete, which served as a guiding template 

for the “Mediterranean Diet” used in clinical trials, had 35–40 

en% from fat (especially cis monounsaturated fatty acids [cis 

MUFA] from olive oil and cis polyunsaturated fatty acids [cis 

PUFA] of the omega-3 family, supplied by fish, egg yolk, and 

wild plants such as purslane).319 The death rates from cancer 

and heart disease in this region of Greece were one-third the 

corresponding death rates in the US.319

Indeed, Mediterranean populations consuming diets rich 

in cis MUFA from virgin olive oil have lower CHD rates,319 

and in a recent reconstructed East African Paleolithic diet,157 

MUFA represented 6–19 en%. Furthermore, various observa-

tional studies have reported an inverse association between 

cis MUFA and CHD risk.24 Moreover, cis MUFA intake is 

associated with improved lipoprotein parameters, reduced 

LDL oxidation, improved insulin sensitivity, and reduced 

thrombogenesis,24 and when it replaces CHO it decreases 

triglycerides and total cholesterol/HDL-C ratio.320

A possible and widely available food source of cis MUFA 

(which in evolutionary terms is a novel but yet apparently 

beneficial food) is virgin olive oil321,322 that also contains 

vitamin E (especially α-, β-, and γ-tocopherol) and phenolic 

compounds, which may reduce LDL and DNA oxidation and 

increase plasma antioxidant capacity, resulting in less vascu-

lar damage by ROS.321,322 Furthermore, it may decrease the 

activation of NF-kB, inhibit endothelial adhesion molecule 

expression and platelet aggregation, and increase nitric oxide 

availability.321,322

In the reconstructed East African Paleolithic diet157 men-

tioned previously, the intake of saturated fatty acids (SAFA) 

was estimated at 11–12 en%, and Cordain156 approximated that 

in historically studied hunter–gatherer populations around the 

globe, SAFA comprised 10–15 en%. Although this is higher 

than the recommended intake (#10%),65 it should be men-

tioned that even a 10 en% increase in SAFA intake replacing 

complex CHO is estimated to raise total and LDL-C by only 

20 mg/dL and 15 mg/dL (0.005 mmol/L and 0.004 mmol/L), 

respectively.323 In addition, replacement of SAFA by refined 

CHO and sugars increases triglyceride levels and small LDL 

particles and reduces HDL-C.320,324 Moreover, not all SAFA 

behave in the same manner. For instance, lauric acid has a 

more favourable effect on TC/HDL-C than does CHO and 

any other fatty acid, either saturated or unsaturated,320 whereas 

myristic and palmitic acids appear to have little effect on this 

CHD risk factor.320  Furthermore, a recent meta-analysis does 

not support the notion that SAFA increase the risk of CHD, 

stroke, or CVD,325 and replacement of SAFA with high GI 

CHO has actually been found to significantly increase the 

risk of myocardial infarction in a recent prospective cohort 

study including 53,664 women and men.326 Also, there are 

populations, such as the horticulturalists of Kitava and the 

natives of Tokelau (Pacific Island), with very high SAFA 

intake from coconut (up to 45% of total energy in the case 

of Tokelau327) and apparently low CHD rates.68,112,327

Finally, SAFA, when consumed in the context of a higher-

protein, reduced-CHO diet, are not metabolically equivalent 

to SAFA in the context of the typical western diet or even 

in the context of a prudent low-fat, high-CHO diet. Indeed, 

a recent trial observed that a reduced-CHO diet led to a 

significant decrease in circulating SAFA in triacylglycerols 

and cholesteryl ester, compared to a low-fat, high-CHO diet 

containing 3 times less dietary SAFA.328

In light of that information, we propose increasing the 

intake of protein (in the form of fish, shellfish, meat from 

grass-fed and game animals, and eggs from free-range hens) 

and cis MUFA (through virgin olive oil, avocados, and nuts), 

decreasing CHO consumption (especially separated sugars 

and cereal grains), and maintaining a moderate intake of 

SAFA. We also support an elimination of industrial trans 

fatty acids (TFA), which have no precedent in human his-

tory and are a recognized CHD risk factor,24,65 and perhaps 

replacing myristic and palmitic acids with lauric acid. This 

can be achieved through avoidance of fatty domesticated 

meats and dairy products and moderate consumption of virgin 

coconut oil, which presents antimicrobial properties,157 may 

promote a more pronounced reduction in abdominal obesity 

in the context of a hypocaloric diet,329 and may also decrease 

TC/HDL-C,320 LDL oxidation,330 and lipoprotein(a).331

Omega-6/omega-3 ratio
Kuipers et al157 estimated a total cis PUFA intake between 8.6 

en% and 15.2 en% in East African Paleolithic diets. But more 

important is the balance between omega-6 and omega-3 cis 

PUFA. In this regard, the ancestral dietary intake of alpha-

linolenic acid (ALA) and linoleic acid (LA) constituted 

3.7–4.7 en% and 2.3–3.6 en%, respectively,157 whereas, in 

the US,24 ALA represents only 0.6 en% and LA 6–7 en%, 
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with similar intake having been reported in various western 

countries, leading to an unprecedent increase in the LA/

ALA ratio of the western diet13,65 to .10/1, mainly due to 

widespread use of LA-rich vegetable oils.14,24,26,65,157

This practice may have important implications, because 

a high LA/ALA ratio is found in countries with a high 

CHD incidence,332,333 and a high LA intake reduces the 

omega-3 index334 (defined as the percentage of eicosapen-

taenoic acid [EPA] + docosahexaenoic acid [DHA] in red 

blood cell membranes, relative to all other fatty acids), which 

has been proposed as a new CHD risk factor.335 Moreover, as 

reviewed by Calder,336 in vitro data from human endothelial 

cell studies demonstrate that LA activates NF-kB, leading to 

a subsequent production of proinflammatory cytokines such 

as IL-6 and TNF-α.

More important, the long-held notion that replacing 

SAFA with LA will reduce CHD risk has recently been 

challenged.337 As reviewed by Ramsden et al,337 only when 

SAFA and TFA were replaced by a combination of omega-6 

and omega-3 cis PUFA was there a reduced risk of CHD in 

randomized controlled trials. In fact, LA-specific diets actu-

ally produced nonsignificant trends toward increased risks of 

all CHD endpoints in randomized controlled trials, with the 

increased risk of death from any cause approaching statistical 

significance.337 This data, coupled with a long-term multiple 

intervention trial with a diet of reduced omega-6 fatty acids 

and increased omega-3 fatty acids, which showed a 70% 

reduction in CHD events and mortality,338 strongly suggest 

that a high LA intake is not necessary to decrease CHD risk 

and may possibly increase it.

As for long-chain PUFA, Kuipers et al157 estimated that 

the intake of omega-3 fatty acids (EPA + DHA) and omega-6 

arachidonic acid (AA) in East African Paleolithic diets was 

1.7–14.2 g/d and 1.81–5.46 g/d, respectively. This figure con-

trasts with an EPA + DHA and AA mean intake of 0.11 g/d 

and 0.2 g/d, respectively, in the western diet.24,157

If the omega-3 index becomes accepted as a CHD 

risk factor, then a reduced intake of omega-3 fatty acids 

(EPA + DHA) in the western diet is cause for serious  concern. 

This observation is further supported by data showing that 

increased consumption of omega-3 fatty acids reduces the 

risk of cardiovascular mortality in both epidemiological 

and intervention studies.24,65 Many of these effects may 

derive from the fact that these fatty acids reduce ventricu-

lar arrhythmias24 and are naturally ligands for peroxisome 

proliferator-activated receptors (PPAR), sterol regulatory 

element-binding proteins (SREBP), and carbohydrate respon-

sive element-binding protein (ChREBP).339 Hence, these fatty 

acids modulate gene expression involved in lipid metabolism, 

lipogenesis, fatty acid oxidation, cholesterol metabolism, 

adipokine secretion, glucose metabolism, insulin sensitivity, 

and inflammation.339 Furthermore, they directly downregulate 

the transcription factor NF-kB, which has a major role in the 

induction of proinflammatory genes.339

On a final note, it should be mentioned that although a 

Paleolithic-type diet would lead to a higher intake of AA 

and AA-derived eicosanoids, which initiate inflammation, 

AA also produces lipoxins that, together with resolvins from 

EPA and DHA and protectins and maresins from DHA, 

are involved in the resolution phase of inflammation.339,340 

Accordingly, increasing the consumption of omega-3 

fatty acids (EPA + DHA) from fatty fish and/or omega-3 

 supplements, choosing eggs and meats from grass-fed ani-

mals (which have a lower omega-6/omega-3 ratio than do 

grain-fed animal meat and eggs108,319), and decreasing the 

consumption of LA-rich vegetable oils may be an effective 

strategy to reduce the risk of various chronic inflammatory 

diseases.

Conclusion
The adoption of diet and lifestyle that are very different from 

what shaped the human genome for more than 2  million years 

is a major factor in the widespread prevalence of chronic 

degenerative diseases that are epidemic in western countries. 

This conclusion strongly suggests that focusing on isolated 

dietary or lifestyle variables is not an appropriate preventive 

medicine strategy.

Indeed, the evolutionary template predicts that optimal 

gene expression, and ultimately an increase in health span 

(the number of years in good health), even if it would not 

affect average life expectancy, will not be achieved by any 

single dietary or lifestyle change but rather through the 

combination of several measures, such as regular physical 

exercise; stress management; sun exposure according to 

latitude and skin color (in order to maintain plasma 25[OH]

D above 45 ng/mL and at the same time avoiding the adverse 

effects of excessive sun exposure); adequate sleep; avoidance 

of tobacco smoke; reduced exposure to pollutants, dietary 

AGEs, ALES, and other Maillard reaction compounds; and 

the adoption of a diet similar to that followed by Paleolithic 

hunter–gatherers. Giving support to this notion, four recent 

human intervention trials18,23,341,342 and one animal trial343 have 

demonstrated that a diet composed of meat, fish, shellfish, 

eggs, fresh fruit and vegetables, roots, tubers, nuts, and 

seeds may be superior to so-called healthy diets such as the 

Mediterranean diet.341
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