

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)?

Bingwen Liu, Min Li, Zhiguang Zhou, Xuan Guan, Yufei Xiang

PII: S0896-8411(20)30067-6

DOI: https://doi.org/10.1016/j.jaut.2020.102452

Reference: YJAUT 102452

To appear in: Journal of Autoimmunity

Received Date: 3 March 2020
Revised Date: 29 March 2020
Accepted Date: 2 April 2020

Please cite this article as: Liu B, Li M, Zhou Z, Guan X, Xiang Y, Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)?, *Journal of Autoimmunity* (2020), doi: https://doi.org/10.1016/j.jaut.2020.102452.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019

1

2 (COVID-19)-induced cytokine release syndrome (CRS)? Bingwen Liu^{1, 2}, Min Li^{3, 4}, Zhiguang Zhou ^{1, 2}, Xuan Guan⁵, Yufei Xiang^{1, 2} 3 4 Address: 5 Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central 6 South University, Changsha, Hunan 410011, China. 7 8 Telephone number: +86 0731 85292154 9 10 Affiliations: 1. Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central 11 12 South University, Changsha, China 2. Key Laboratory of Diabetes Immunology, Central South University, Ministry of 13 14 Education, National Clinical Research Center for Metabolic Diseases, Changsha, China 3. Department of Respiratory Medicine, Xiangya Hospital, Central South University, 15 16 Changsha, China 17 4. Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, 18 Changsha, China 19 5. Department of Internal Medicine, AdventHealth Orlando, Orlando, USA 20 21 Correspondence to Yufei Xiang (yufei.xiang@csu.edu.cn) and Xuan Guan 22 (Xuan.Guan.MD@Adventhealth.com) 23 24 Words count: 2483 25 26 **Highlights** 1

- Cytokine release syndrome (CRS) contributes to life-threatening multiple organ
 dysfunction in coronavirus disease 2019 (COVID-19) and represents a potential
 therapeutic target.
- Mechanistic understanding of CRS permits the design of novel immunotherapies.
- Targeting key molecules within the inflammatory cytokine network, such as
 interleukin-6 (IL-6), is a novel strategy for COVID-19-induced CRS and warrants
 further investigation.

Abstract

The emergent outbreak of coronavirus disease 2019 (COVID-19) has caused a global pandemic. Acute respiratory distress syndrome (ARDS) and multiorgan dysfunction are among the leading causes of death in critically ill patients with COVID-19. The elevated inflammatory cytokines suggest that a cytokine storm, also known as cytokine release syndrome (CRS), may play a major role in the pathology of COVID-19. However, the efficacy of corticosteroids, commonly utilized antiinflammatory agents, to treat COVID-19-induced CRS is controversial. There is an urgent need for novel therapies to treat COVID-19-induced CRS. Here, we discuss the pathogenesis of severe acute respiratory syndrome (SARS)-induced CRS, compare the CRS in COVID-19 with that in SARS and Middle East respiratory syndrome (MERS), and summarize the existing therapies for CRS. We propose to utilize interleukin-6 (IL-6) blockade to

47	manage COVID-19-induced CRS and discuss several factors that should be taken into
48	consideration for its clinical application.
49	
50	Keywords: Coronavirus disease 2019; Cytokine release syndrome; Interleukin-6;
51	Tocilizumab
52	
53 54	
55	Manuscript
56	The newly emerging coronavirus disease 2019 (COVID-19), first reported in Wuhan.
57	China, has swept across 202 countries with stunning mortality. The World Health
58	Organization (WHO) has declared this deadly outbreak a pandemic, with tremendous
59	ramifications impacting every life. By March 27, 2020, the number of deaths had
60	climbed to 23,495 among 512,701 confirmed cases in WHO reports [1]. This strain has
61	been the third most lethal pathogenic human coronavirus, following severe acute
62	respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS)
63	coronaviruses in 2003 and 2012, respectively. Severe acute respiratory syndrome
64	coronavirus 2 (SARS-CoV-2), a novel beta-coronavirus, has been identified as the
65	pathogen for COVID-19 [2]. SARS-CoV-2 targets the lung and likely other organs as
66	well, leading to multiorgan damage by binding to the angiotensin-converting enzyme 2

(ACE2) receptor [2], a cell surface protein highly expressed in the lung, heart and

67

68

kidney [3].

69	Clinical data from Wuhan, China, showed that approximately 17.7-32.0% of
70	patients require intensive care unit (ICU)-level care, with approximately 9.5-12.0 days
71	from symptom onset to multiorgan dysfunctions, namely, acute respiratory distress
72	syndrome (ARDS) (67%), acute kidney injury (29%), acute cardiac injury (23%), and
73	liver dysfunction (29%) [4-6]. The mortality of critically ill patients is as high as
74	49.0-61.5% [4, 5]. Evidence suggests that CRS might play a major role in severe
75	COVID-19. Inflammatory cytokines and chemokines, including interleukin-6 (IL-6),
76	interleukin-1 β (IL-1 β), induced protein 10 (IP10) and monocyte chemoattractant
77	protein-1 (MCP-1), were significantly elevated in COVID-19 patients, and some were
78	more commonly seen in severe patients than in nonsevere patients (Table 1). <u>In</u>
79	COVID-19 patients with elevated inflammatory cytokines, postmortem pathology has
80	revealed tissue necrosis and interstitial macrophage and monocyte infiltrations in the
81	lung, heart and gastrointestinal mucosa [7, 8]. Moreover, severe lymphopenia with
82	hyperactivated proinflammatory T cells [8] and decreased regulatory T cells [9] is
83	commonly seen in critically ill patients, suggesting dysregulated immune responses.
84	CRS refers to an uncontrolled and overwhelming release of proinflammatory
85	mediators by an overly activated immune system [10]. CRS is a common
86	immunopathogenesis underlying many pathological processes, such as ARDS, sepsis,
87	graft-versus-host disease (GvHD), macrophage activation syndrome (MAS) induced

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

lymphohistiocytosis (HLH) [11]. Recently, CRS has also been reported to be a complication of immunotherapies, such as chimeric antigen receptor (CAR) T cell therapies [12]. Previous experience with SARS and MERS has also revealed florid CRS in critically ill patients (Table 1). Studies have shown that ARDS occurs in some SARS patients despite a diminishing viral load, suggesting that an exuberant host immune response rather than viral virulence is possibly responsible for tissue pathologies. Therefore, antiviral therapy alone may be inadequate [13]. Corticosteroids, one of the most widely utilized anti-inflammatory agents, are still commonly prescribed in treating COVID-19 patients (72.2% in the ICU setting) [14]. However, as outlined in the Chinese guidelines of COVID-19 [15], physicians need to be cautious of steroid use due to its nebulous benefits in the setting of viral respiratory infection. Several studies even reported inferior outcomes of SARS patients treated with corticosteroids [16]. Another concern of corticosteroids is their short- and long-term adverse effects. More than half of SARS patients treated with corticosteroids suffer from joint pain and bone marrow abnormalities [17]. Other therapies aiming to dampen excessive serum inflammatory mediators, such as plasmapheresis or continuous renal replacement therapy (CRRT), either require specific equipment or lack documented efficacy [18]. Thus, there is still an unmet need for the treatment of COVID-19-induced CRS [19]. In the past decade, immunotherapy has made great strides in managing CRS of various etiologies, including autoimmunity, malignancy and CAR T cell therapies

(Table 2). We propose herein that attenuating the detrimental host immune response by
 immunomodulators may be a beneficial addition to antiviral therapy.

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

A better understanding of the pathogenesis underlying CRS may facilitate the design of novel immunotherapies. The immunologic mechanism of CRS induced by coronaviruses is not fully elucidated, and existing data are largely derived from SARS coronavirus (SARS-CoV), a close counterpart of SARS-CoV-2. It is believed that delayed kinetics of virus clearance are the trigger. The delayed type I interferon (IFN) response plays a pivotal role in the process of SARS. In the initial phase, SARS-CoV evades pattern recognition receptors (PRRs) and antagonizes the type I IFN response by inducing double-membrane vesicles that lack PRRs, mRNA capping and proteins that inhibit PRR downstream cascades [20, 21]. The dampened type I IFN in airway and alveolar epithelial cells results in rapid viral replication. Plasmacytoid dendritic cells (pDCs) and macrophages are exceptions, with a full response to SARS-CoV, launching a delayed but robust type I IFN response and releasing other inflammatory cytokines against SARS-CoV [21, 22]. Consequently, the activation of type I IFN signaling cascades induces extensive IFN-stimulated gene (ISG) expression and attracts inflammatory monocyte-macrophages (IMMs), neutrophils, dendritic cells and natural killer cells to the lung. This process amplifies the innate response, forming a cytokine-driven vicious cycle [21]. The virus-specific T cell immune response is indispensable for virus clearance, an essential step in protecting mice from lethal

129	SARS-CoV infection [23]. Both regulatory T cells and naïve T cells negatively regulate
130	the activated innate immune responses by cell-cell interactions [24]. Exuberant
131	production of cytokines, such as type I IFN, diminishes T cell responses by inducing T
132	cell apoptosis to aggravate CRS and lymphopenia, as observed in SARS patients [21,
133	25]. The overwhelming proinflammatory cytokines and chemokines cause localized
134	pulmonary injury characterized by diffuse alveolar damage with epithelial and
135	endothelial apoptosis, dysregulated coagulation and pulmonary fibrinolysis. They may
136	also leak into systemic circulation to cause extrapulmonary manifestations and
137	eventually multiple organ dysfunction syndrome [26, 27].
138	Among the excessive cytokines produced by activated macrophages, IL-6 is one of
139	the key cytokines. Elevated IL-6 levels were observed in patients with SARS and were
137	the key cytokines. Elevated 12-6 levels were observed in patients with SARS and were
140	correlated with disease severity (Table 1) [28]. IL-6 activates its downstream Janus
141	kinase (JAK) signal by binding the transmembrane (cis-signaling) or soluble form
142	(trans-signaling) of the IL-6 receptor (IL-6R) and interacting with membrane-bound
143	gp130 [29]. Excessive IL-6 signaling leads to a myriad of biological effects that
144	contribute to organ damage, such as maturing naïve T cells into effector T cells,
145	inducing vascular endothelial growth factor (VEGF) expression in epithelial cells,
146	increasing vessel permeability [30], and reducing myocardium contractility [31].
147	The elevated cytokine levels may also be responsible for the lethal complications of
148	COVID-19. As shown in Table 1, patients with COVID-19, SARS or MERS presented

149	distinct cytokine profiles. Patients with COVID-19 presented elevated T helper 2
150	cytokines (interleukin-4) in addition to T helper 1 cytokines compared to those in
151	patients with SARS or MERS. There are many potential therapies targeting the host
152	immune system that may be effective for COVID-19, such as inflammatory cytokine
153	blockade (IL-6, IL-1, and IFN), stem cell therapy, immune cell depletion, transfusion of
154	convalescent plasma and artificial extracorporeal liver support [32], among which we
155	believe IL-6 blockade is a promising strategy for COVID-induced CRS. We noticed
156	that elevated IL-6 levels were consistently reported in several studies of COVID-19
157	[33-36] and might serve as a predictive biomarker for disease severity [37]. A large
158	retrospective cohort study found that IL-6 levels were correlated with mortality in
159	patients with COVID-19 [6]. Mechanistically, IL-6 is essential for the generation of T
160	helper 17 (Th17) cells in the dendritic cell-T cell interaction [30]. The excessive IL-6
161	may explain the overly activated Th17 cells observed in COVID-19 patients, as
162	reported by Xu et al [8]. Although clinical data of IL-6 blockade in virus
163	infection-related CRS are unavailable, animal studies of SARS-CoV have
164	demonstrated that inhibiting nuclear factor kappa-B (NF- κ B), a key transcription factor
165	of IL-6, or infecting animals with SARS-CoV lacking the coronavirus envelope (E)
166	protein, a strong stimulus to NF-κB signaling, increased animal survival, with reduced
167	IL-6 levels [38]. Interestingly, we noticed that the E proteins of SARS-CoV-2 (Ref
168	sequence QHD43418.1) and SARS-CoV (Ref sequence NP_828854.1) share 95%
169	homology. Since the E protein is the determinant of virulence and mediates the host

immune reaction to coronavirus [39, 40], it is reasonable to speculate that both viruses elicit a similar immune response. Hence, targeting IL-6 may be effective for COVID-induced CRS.

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

Tocilizumab is a recombinant humanized monoclonal anti-IL□6R antibody. It binds both soluble and membrane □bound IL □6R to inhibit IL □6 □ mediated *cis*- and trans-signaling [41]. Tocilizumab has been approved by the U.S. Food and Drug Administration for the treatment of severe CAR T cell□induced CRS (Table 2) [12]. As mentioned earlier, CRS is the most severe adverse effect induced by CAR T cell therapy, with an incidence of 50-100% [41]. It is believed that binding of the CAR T cell receptor to its antigen induces the activation of bystander cells to release massive amounts of interferon γ (IFN- γ) and tumor necrosis factor- α (TNF- α), which further activate innate immune cells, including macrophages and endothelial cells, to secrete IL-6 and other inflammatory mediators [42]. IL-6 is a central mediator of toxicity in CRS, and its level correlates with the severity of CAR T cell □ induced CRS [12, 43]. Clinically, severe cases of CAR-T induced CRS present with fever, hypoxia, acute renal failure, hypotension, and cardiac arrhythmia that often warrants ICU admission [12]. Tocilizumab showed promising efficacy in severe CRS. After one or two doses of tocilizumab, 69% of patients responded within 14 days, for whom fever and hypotension resolved within hours, and vasopressors could be weaned quickly in several days [10, 41]. The effect of tocilizumab has also been reported in CRS related to several other conditions, such as sepsis, GvHD and MAS [44-46]. Moreover, tocilizumab is safe for both pediatric and adult patients, as no adverse reactions have been reported in a retrospective analysis of patients with CAR T cell-induced CRS [41]. The most common serious adverse effect is infections in patients with rheumatoid arthritis, in which chronic therapy is maintained for a longer period of time (3.11-3.47/100 person-years with 8 mg/kg tocilizumab every 4 weeks) [47]. Moreover, a possible correlation between tocilizumab and medication-related osteonecrosis of the jaws was reported in patients with osteoporosis[48].

Given the efficacy of tocilizumab in CRS and the pivotal role of IL-6 in COVID-19, we propose to repurpose tocilizumab to treat severe cases of COVID-19. Regarding its clinical use, we suggest taking the following factors into consideration and hope that future clinical trials will be able to address them. 1) Diagnosis criteria. There is currently no consensus in diagnosing CRS in COVID-19. Early diagnosis of CRS in COVID-19 patients and prompt initiation of immunomodulatory treatment may be beneficial, as suggested by the experience in HLH [49]. Prompt screening of COVID-19 patients with Hscore, a diagnostic score for HLH, may help to discriminate patients with CRS [50]. 2) Disease severity grading system. Experience with immunotherapy-triggered CRS suggests that tocilizumab is indicated only for severe cases, while the risk benefit assessment favors symptomatic management for mild cases [10]. This approach is rationalized by the worry that aggressive antiinflammation

therapy may negate the effect of therapeutic biologicals, such as CAR T cells. This
principle is not shared in viral infections, such as COVID-19, in which timely
intervention in mild or moderate patients may prevent progression. A disease severity
grading system may provide an objective tool to assess the most appropriate timing to
initiate tocilizumab treatment. Currently, the Chinese guidelines for COVID-19 grade
patients into mild, moderate, severe and critical by vital signs, radiographic findings
and complications [51]. It is currently unclear which population may benefit the most
from the treatment. 3) Combined antiviral treatment. Based on experience with
corticosteroids, immunosuppressive agents may delay virus clearance. Combining
immunomodulators with antiviral agents may add further benefit. Preliminary results
from clinical trials of several antiviral treatments are expected to be available soon
(remdesivir [NCT04252664, NCT04257656], favipiravir [ChiCTR2000029600,
NCT04310228] and chloroquine [ChiCTR2000029609, NCT04286503]). 4)
Secondary infection. Infection is a common adverse effect associated with
immunomodulators such as tocilizumab. Critically ill COVID-19 patients are
susceptible to secondary infection and may have an increased risk of comorbid chronic
infections, such as hepatitis B and tuberculosis [5]. It is unclear to what degree
tocilizumab contributes to secondary infection. Hence, the goal of treatment is to
prevent or attenuate life-threatening inflammation while minimizing the potential of
secondary infection. For this reason, prophylactic antibiotics may be indicated, and
bacteriologic and fungal assessments are of great importance. For patients with

231	secondary infection or coexisting chronic infection, the utilization of tocilizumab
232	should be cautious. 5) Cytokine measurement. Cytokine levels may serve as
233	biomarkers for risk stratification and prognosis. A previous cohort study suggested that
234	IL-6 levels were significantly elevated in COVID-19 patients but varied considerably
235	among both ICU and non-ICU patients [34]. This observation raises the question of
236	whether IL-6 blockade is effective only in patients with elevated serum IL-6 levels. If
237	so, IL-6 measurement may be an indispensable part of the grading system. Moreover,
238	the IL-6 level alone may not be sufficient to reflect its functional downstream effects
239	[52]. An assay that distinguishes functional IL-6 from total IL-6 may provide a refined
240	approach to guide therapeutic decisions. C-reactive protein (CRP), an acute-phase
241	inflammatory protein synthesized by IL-6-dependent hepatic biosynthesis, is a reliable
242	marker of IL-6 bioactivity and is used to predict CRS severity and monitor IL-6
243	blockade efficacy for patients with CAR T cell-induced CRS [10, 12]. The CRP level in
244	virus-induced CRS remains to be determined. Most studies suggested that elevated
245	CRP levels were associated with severe COVID-19 [37, 53, 54], with a few exceptions
246	[35]. Nevertheless, future studies on biomarkers are needed for the purpose of risk
247	stratification and therapeutic effect monitoring. There is also a battery of biological
248	agents available that target various critical molecules in the inflammatory network
249	(Table 2), such as IL-1, IL-18, TNF, and IFN, or Janus kinase/signal transducer and
250	activator of transcription (JAK/STAT) signaling. These agents may also be beneficial,
251	and if so, routine inflammatory cytokine measurement is warranted.

252	Notably, SARS-CoV, MERS-CoV and SARS-CoV-2 were all considered to have
253	originated in bats, a nature reservoir of various coronavirus species with high genomic
254	diversity [55, 56]. It is unclear how many bat coronaviruses are directly or indirectly
255	transmissible to humans and how many have the potential to cause disease, especially
256	for those that share the viral spike sequence and are capable of using the human
257	ACE2 receptor for entry [55]. Thus, it is highly likely that a novel bat coronavirus
258	could cause future epidemics. For future epidemic preparedness and to reduce
259	mortality in COVID-19 patients, global effort is needed to promote novel therapy to
260	treat virus-induced CRS during the COVID-19 outbreak. Potential therapies available
261	for CRS are summarized in Table 2. We hope that this assessment will spur future
262	clinical trials on COVID-19-induced CRS. Utilizing biologicals such as tocilizumab to
263	treat virus-induced CRS is a new field. Many other therapeutic options, including
264	hydroxychloroquine combined with azithromycin (NCT04322123,
265	NCT04321278)[57], mesenchymal stem cell therapy (NCT04269525, NCT04252118)
266	and convalescent plasma (NCT04292340), have moved into clinical trials for
267	COVID-19. We look forward to seeing additional exciting progress and clinical
268	evidence in this area.

272	Fundings
273	Dr. Yufei Xiang was supported by Shenghua Yuying talented program from Central
274	South University and European Foundation for Diabetes Study (EFSD) fellowship.
275	Prof. Zhiguang Zhou was supported by the National Natural Science Foundation of
276	China (81820108007, 81600649), Science and Technology Major Project of Hunan
277	Province (2017SK1020).
278	Duality of Interest.
279	No potential conflicts of interest relevant to this review were reported.
280	Author Contributions.
281	B.L searched literatures, B.L, Y.X and X.G drafted the manuscript, Y.X, X.G, M.L
282	and Z.Z. discussed and revised the manuscript.
283	

Table 1. The levels of cytokines in patients with COVID-19, SARS and MERS versus those in normal controls

Cytokines	COVID-19	SARS	MERS
IL-6	↑ in some[36, 58] or in severe cases[6, 34, 54]	1	Unknown but ↑ in severe than in mild cases
IL-2	1	↑ or NS	NS
IL-1β	1	NS	Unknown
IL-8	1	1	Unknown
IL-17	1	Unknown	†
IFN-γ	1	NS	↑
TNF-α	1	NS	↑
IP10	1	1	Unknown but ↑ in severe than in mild cases
MCP-1	1	↑ or NS	Unknown
IL-10		NS or ↑ in convalescent cases	↑
IL-4	3	NS or ↓ in convalescent cases	NS
Ref	[6, 33, 34, 36, 54, 58]	[28, 59-61]	[62, 63]

286 Up or down arrows indicate higher or lower levels versus normal controls, respectively. Abbreviations: NS; no

significant change versus normal controls, IL: interleukin, IFN- γ : interferon γ , IP: induced protein, MCP: monocyte

288 chemoattractant protein, TNF- α : tumor necrosis factor α .

287

Table 2. Summary of candidate therapies for cytokine release syndrome (CRS) and related diseases

Therapy	Trigger/associated diseases	Mechanism	Status for hypercytokinemia	Approved by U.S. FDA	Ref
Biologic therapy.					
Tocilizumab	MAS, CRS, visceral leishmaniasis-assoc iated HLH, GvHD and sepsis	Human monoclonal anti-IL-6 receptor antibody	 Approval for CAR T cell therapy-associated CRS Phase 4 for SARS-CoV-2 (ChiCTR2000029765, NCT04310228, NCT04315480, NCT04317092) Phase 2 for GvHD (NCT02206035, NCT04070781, NCT03434730, NCT03699631) 	Yes	[44, 45, 64-6 6]
Siltuximab	CRS	Anti-IL-6 antibody	Preclinical for CRS	Yes	[67]
Anakinra	MAS, sepsis, HIV/AIDS-associat ed HLH and CRS	IL-1 receptor antagonist blocking IL-1 α and IL-1 β	 Phase 1 for MAS (NCT02780583) Phase 2 for MAS and sepsis (NCT03332225) 	Yes	[68- 70]
Canakinumab	MAS	Human monoclonal anti-IL-1β antibody	 Phase 3 for MAS (NCT00889863, NCT00886769, NCT00891046) 	Yes	[71, 72]
Rilonacep	MAS	Neutralizing IL-1α and IL-1β	Randomized controlled trial for MAS	Yes	[73]

Rituximab	Epstein-Barr virus-induced HLH, GvHD and MAS	Human monoclonal anti-CD20 antibody to deplete B cells	 Phase 1-2 for GvHD (NCT04235036, NCT01135641, NCT00350545, NCT01001780) 	Yes	[74- 76]
Alemtuzumab	HLH, GvHD	Human monoclonal anti-CD52 antibody	 Phase 2 for HLH (NCT02472054, NCT02385110) Phase 1-2 for GvHD (NCT00410657, NCT00495755) 	Yes	[77, 78]
Ruxolitinib	HLH, GvHD and MAS	Inhibition of JAK/STAT signaling	 Phase 3 for HLH (NCT04120090, NCT03533790) Phase 4 for GvHD (ChiCTR1900024408) 	Yes	[66, 79]
Tofacitinib	GvHD	Selective inhibition of JAK1	Preclinical for GvHD	Yes	[80, 81]
Tadekinig alfa	NLRC4-associated MAS	Recombinant human IL-18-binding protein (rhIL-18BP) to tightly bind IL-18	Phase 3 for NLRC4-associated MAS (NCT03512314, NCT03113760)	No	[82]
Emapalumab	HLH	Anti-IFN γ antibody	Approval for primary HLH	Yes	[83]
Infliximab	HLH, GvHD and sepsis	Human monoclonal anti-TNFα antibody	 Phase 1-2 for GvHD (NCT00228839, NCT00228839, NCT00201799) Phase 4 for GvHD in combination with daclizumab 	Yes	[84- 86]

			(NCT00574470)		
Etanercept	MAS, GvHD and CRS	Decoy TNF receptor competitively inhibiting TNF	 Phase 2-3 for GvHD (NCT00726375, NCT00141739 NCT00141713, NCT00224874, ChiCTR1900024408) 	Yes	[87- 89]
Ponatinib	Influenza A	Inhibiting breakpoint cluster region-Abelson (BCR-ABL) kinase to regulate type I IFNs	Preclinical for cytokine storms in influenza	Yes	[90]
Alternative therap	y: corticosteroids, IVIG,	chemotherapeutic agents, blood pu	rification, NSAIDs, cell-based therapy and others		
Corticosteroids	Widely used for increased levels of cytokines	Inhibition of HAT and recruitment of HDAC2 activity to the inflammatory gene transcriptional complex to downregulate inflammatory genes	 Widely used for cytokine storms Phase 4 for SARS-CoV-2 severe pneumonia (NCT04263402, ChiCTR2000029386, ChiCTR2000029656) 	Yes	[91]
IVIG	Widely used for increased levels of cytokines	Inhibition of complement activation, blockade of Fc-fragments and Fc receptors and neutralization of cytokines	Widely used for cytokine storms ● Phase 2-3 for SARS-CoV-2 (NCT04261426)	Yes	[92]
Etoposide	Widely used for primary and secondary HLH, but	Selective deletion of activated T cells and efficient suppression of	Widely used for HLH in combination of corticosteroids and cyclosporine A (HLH2004)	Yes	[79, 93,

	little evidence on HLH induced by influenza or coronavirus	inflammatory cytokine production	Preclinical for ARDS		94]
Cyclosporine A	Widely used for primary and secondary HLH, but little evidence on HLH induced by influenza or coronavirus	Inhibition of the translocation into the nucleus of NF-AT to lower the activity of overactivated T cells	Widely used for HLH in combination with corticosteroids and etoposide (HLH2004)	Yes	[79, 93, 95]
Cyclophosphamide	MAS	A bioprecursor of a nitrogen mustard alkylation agent to disturb DNA and inhibit cell proliferation	 Phase 3 for HLH in combination with chemotherapies followed by stem cell transplant (NCT00334672) Phase 2 for non-Hodgkin's lymphoma with HLH in combination with rituximab and other chemotherapies (NCT01818908) 	Yes	[96]
Mycophenolate mofetil	MAS and HLH	Inhibition of inosine monophosphate dehydrogenase to prevent lymphocyte proliferation	 Phase 3 for HLH in combination with other chemotherapies followed by stem cell transplant (NCT00334672) 	Yes	[96]

Plasmapheresis	Widely used for increased levels of cytokines	Extracorporeal removal of cytokines, endotoxins, and immunocomplexes	Randomized single-blind trial for sepsis (NCT01249222)	Yes	[97, 98]
Hemofiltration			Randomized open-label trial for sepsis (NCT03426943)	Yes	[18, 98]
Dialysis/hemodialysi s			Randomized open-label trial for sepsis (NCT00537693)	Yes	[99, 100]
Hemadsorption		JOURNA	 Trial for sepsis (NCT00559130, NCT02588794 NCT02288975, NCT04226430) Randomized open-label trial for transplant-associated hypercytokinemia (NCT03145441, NCT04203004) Randomized single-blind trial for CAR T cell-associated CRS (NCT04048434) 	Yes	[101
Aspirin	Acute lung injury and ARDS	Antiplatelet effects to reduce neutrophil recruitment by platelet activation	• Phase 2 for ARDS (NCT01659307)	Yes	[102
Selective COX-2	Influenza A	Downregulation of COX-2 to decrease proinflammatory	Phase 3 of celecoxib in combination with oseltamivir for	Yes	[103

inhibitors		cytokine levels	influenza A (NCT02108366)]
Mesenchymal stem/stromal cells (MSCs)	ARDS, sepsis and GvHD	Alteration of the behavior of both adaptive and innate immune cells	 Approval for GvHD in Canada Phase 1-2 for SARS-CoV-2 (NCT04269525, NCT04252118, ChiCTR2000029817, ChiCTR2000029816) Phase 1-2 for ARDS (NCT 01775774, NCT 02097641, NCT03818854, NCT 01902082) Phase 1-2 for sepsis (NCT03369275, NCT01849237) 	Yes	[104 , 105]
Hematopoietic stem cell transplantation	Primary HLH and refractory HLH	Replacement with a genetically normal bone marrow	Widely used for familial HLH in children	Yes	[93]
Anti-thymocyte globulin	Primary HLH, MAS and GvHD	Selective ablation of T cells	Widely used to treat GvHD	Yes	[106
Statin	Sepsis	Inhibition of hydroxymethylglutaryl-CoA reductase to reduce proinflammatory cytokine levels	• Phase 2-3 for sepsis (NCT00676897, NCT00452608)	Yes	[107]

Chloroquine/hydroxy chloroquine	Sepsis and MAS	Inhibition of Toll-like receptors and high mobility group box 1 (HMBG1) to reduce proinflammatory cytokine levels	 Preclinical for sepsis Approval for rheumatic diseases and may reduce SLE-induced MAS Phase 3-4 for SARS-CoV-2 (NCT04261517, ChiCTR2000029898) 	Yes	[108 , 109]
S1P1 agonist	Influenza A	S1P1 receptor agonist	Preclinical for cytokine storms in influenza A and GvHD	No	[110
(CYM-5442)		downregulating inflammatory			,
		mediators, possibly by NF-κB			111]
		signaling	<		

Abbreviations: MAS: macrophage activation syndrome, CRS: cytokine release syndrome, HLH: hemophagocytic lymphohistiocytosis, IVIG: intravenous immunoglobulin, CAR: chimeric antigen receptor, SARS-CoV-2: severe acute respiratory syndrome coronavirus 2, IL-1: interleukin-1, IL-6: interleukin-6, IL-18: interleukin-18, IFN: interferon. TNF: tumor necrosis factor, JAK/STAT: the Janus kinase/signal transducer and activator of transcription, GvHD: graft-versus-host disease, ARDS: acute respiratory distress syndrome, NSAIDS: nonsteroidal anti-inflammatory drugs, COX-2: cyclo-oxygenase 2; S1P1: sphingosine-1-phosphate receptor 1, NF-kB: nuclear factor kappa-B.

References:

- [1] WHO. Coronavirus disease 2019 (COVID-19) Situation Report 67. 2020.
- [2] P. Zhou, X. L. Yang, X. G. Wang, B. Hu, L. Zhang, W. Zhang *et al.* A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020.
- [3] A. J. Turner, J. A. Hiscox, N. M. Hooper. ACE2: from vasopeptidase to SARS virus receptor. Trends Pharmacol Sci, 2004;25:291-4.
- [4] T. Novel Coronavirus Pneumonia Emergency Response Epidemiology. [The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China]. Zhonghua Liu Xing Bing Xue Za Zhi, 2020;41:145-51.
- [5] X. Yang, Y. Yu, J. Xu, H. Shu, J. Xia, H. Liu *et al.* Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med, 2020.
- [6] F. Zhou, T. Yu, R. Du, G. Fan, Y. Liu, Z. Liu *et al.* Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, 2020.
- [7] X. H. Yao, T. Y. Li, Z. C. He, Y. F. Ping, H. W. Liu, S. C. Yu *et al.* [A pathological report of three COVID-19 cases by minimally invasive autopsies]. Zhonghua Bing Li Xue Za Zhi, 2020;49;E009.
- [8] Z. Xu, L. Shi, Y. Wang, J. Zhang, L. Huang, C. Zhang et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med, 2020.
- [9] C. Qin, L. Zhou, Z. Hu, S. Zhang, S. Yang, Y. Tao *et al.* Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis, 2020.
- [10] D. W. Lee, R. Gardner, D. L. Porter, C. U. Louis, N. Ahmed, M. Jensen *et al.* Current concepts in the diagnosis and management of cytokine release syndrome. Blood, 2014:124:188-95.
- [11] S. Mahajan, C. E. Decker, Z. Yang, D. Veis, E. D. Mellins, R. Faccio. Plcgamma2/Tmem178 dependent pathway in myeloid cells modulates the pathogenesis of cytokine storm syndrome. J Autoimmun, 2019;100:62-74.
- [12] S. S. Neelapu, S. Tummala, P. Kebriaei, W. Wierda, C. Gutierrez, F. L. Locke *et al.* Chimeric antigen receptor T-cell therapy assessment and management of toxicities. Nat Rev Clin Oncol, 2018;15:47-62.
- [13] J. S. Peiris, C. M. Chu, V. C. Cheng, K. S. Chan, I. F. Hung, L. L. Poon *et al.* Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet, 2003;361:1767-72.
- [14] D. Wang, B. Hu, C. Hu, F. Zhu, X. Liu, J. Zhang *et al.* Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA, 2020.
- [15] Y. H. Jin, L. Cai, Z. S. Cheng, H. Cheng, T. Deng, Y. P. Fan *et al.* A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res, 2020;7:4.
- [16] C. D. Russell, J. E. Millar, J. K. Baillie. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet, 2020.

- [17] J. F. Griffith, G. E. Antonio, S. M. Kumta, D. S. Hui, J. K. Wong, G. M. Joynt *et al*. Osteonecrosis of hip and knee in patients with severe acute respiratory syndrome treated with steroids. Radiology, 2005;235:168-75.
- [18] E. M. Borthwick, C. J. Hill, K. S. Rabindranath, A. P. Maxwell, D. F. McAuley, B. Blackwood. High-volume haemofiltration for sepsis in adults. Cochrane Database Syst Rev, 2017;1:CD008075.
- [19] A. Zumla, D. S. Hui, E. I. Azhar, Z. A. Memish, M. Maeurer. Reducing mortality from 2019-nCoV: host-directed therapies should be an option. Lancet, 2020.
- [20] Q. Liu, Y. H. Zhou, Z. Q. Yang. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol Immunol, 2016;13:3-10.
- [21] R. Channappanavar, A. R. Fehr, R. Vijay, M. Mack, J. Zhao, D. K. Meyerholz *et al.* Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice. Cell Host Microbe, 2016;19:181-93.
- [22] H. K. Law, C. Y. Cheung, H. Y. Ng, S. F. Sia, Y. O. Chan, W. Luk *et al.* Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells. Blood, 2005;106:2366-74.
- [23] J. Zhao, J. Zhao, S. Perlman. T cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice. J Virol, 2010;84:9318-25.
- [24] K. D. Kim, J. Zhao, S. Auh, X. Yang, P. Du, H. Tang *et al.* Adaptive immune cells temper initial innate responses. Nat Med, 2007;13:1248-52.
- [25] R. S. Wong, A. Wu, K. F. To, N. Lee, C. W. Lam, C. K. Wong *et al.* Haematological manifestations in patients with severe acute respiratory syndrome: retrospective analysis. BMJ, 2003;326:1358-62.
- [26] R. Channappanavar, S. Perlman. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol, 2017;39:529-39.
- [27] J. M. Nicholls, L. L. Poon, K. C. Lee, W. F. Ng, S. T. Lai, C. Y. Leung *et al.* Lung pathology of fatal severe acute respiratory syndrome. Lancet, 2003;361:1773-8.
- [28] Y. Zhang, J. Li, Y. Zhan, L. Wu, X. Yu, W. Zhang *et al.* Analysis of serum cytokines in patients with severe acute respiratory syndrome. Infect Immun, 2004;72:4410-5.
- [29] D. E. Johnson, R. A. O'Keefe, J. R. Grandis. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol, 2018;15:234-48.
- [30] T. Tanaka, M. Narazaki, T. Kishimoto. Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy, 2016;8:959-70.
- [31] N. Pathan, C. A. Hemingway, A. A. Alizadeh, A. C. Stephens, J. C. Boldrick, E. E. Oragui *et al.* Role of interleukin 6 in myocardial dysfunction of meningococcal septic shock. Lancet, 2004;363:203-9.
- [32] C. Chen, X. R. Zhang, Z. Y. Ju, W. F. He. [Advances in the research of cytokine storm mechanism induced by Corona Virus Disease 2019 and the corresponding immunotherapies]. Zhonghua Shao Shang Za Zhi, 2020;36:E005.
- [33] Y. Fang, H. Zhang, Y. Xu, J. Xie, P. Pang, W. Ji. CT Manifestations of Two Cases of 2019 Novel Coronavirus (2019-nCoV) Pneumonia. Radiology, 2020;200280.

- [34] C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu *et al.* Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020.
- [35] L. Chen, H. G. Liu, W. Liu, J. Liu, K. Liu, J. Shang *et al.* [Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia]. Zhonghua Jie He He Hu Xi Za Zhi, 2020;43:E005.
- [36] N. Chen, M. Zhou, X. Dong, J. Qu, F. Gong, Y. Han *et al.* Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 2020;395:507-13.
- [37] Y. Gao, T. Li, M. Han, X. Li, D. Wu, Y. Xu *et al.* Diagnostic Utility of Clinical Laboratory Data Determinations for Patients with the Severe COVID-19. J Med Virol, 2020.
- [38] M. L. DeDiego, J. L. Nieto-Torres, J. A. Regla-Nava, J. M. Jimenez-Guardeno, R. Fernandez-Delgado, C. Fett et al. Inhibition of NF-kappaB-mediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival. J Virol, 2014;88:913-24.
- [39] J. L. Nieto-Torres, M. L. DeDiego, C. Verdia-Baguena, J. M. Jimenez-Guardeno, J. A. Regla-Nava, R. Fernandez-Delgado *et al.* Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog, 2014;10:e1004077.
- [40] D. Schoeman, B. C. Fielding. Coronavirus envelope protein: current knowledge. Virol J, 2019;16:69.
- [41] R. Q. Le, L. Li, W. Yuan, S. S. Shord, L. Nie, B. A. Habtemariam *et al.* FDA Approval Summary: Tocilizumab for Treatment of Chimeric Antigen Receptor T Cell-Induced Severe or Life-Threatening Cytokine Release Syndrome. Oncologist, 2018;23:943-7.
- [42] A. Shimabukuro-Vornhagen, P. Godel, M. Subklewe, H. J. Stemmler, H. A. Schlosser, M. Schlaak *et al.* Cytokine release syndrome. J Immunother Cancer, 2018;6:56.
- [43] M. Norelli, B. Camisa, G. Barbiera, L. Falcone, A. Purevdorj, M. Genua et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med, 2018;24:739-48.
- [44] F. De Benedetti, H. I. Brunner, N. Ruperto, A. Kenwright, S. Wright, I. Calvo *et al.*Randomized trial of tocilizumab in systemic juvenile idiopathic arthritis. N Engl J Med, 2012;367:2385-95.
- [45] G. A. Kennedy, A. Varelias, S. Vuckovic, L. Le Texier, K. H. Gartlan, P. Zhang *et al*. Addition of interleukin-6 inhibition with tocilizumab to standard graft-versus-host disease prophylaxis after allogeneic stem-cell transplantation: a phase 1/2 trial. Lancet Oncol, 2014;15:1451-9.
- [46] F. Sheng, M. Han, Z. Huang, L. Zhang. Interleukin 6 receptor inhibitor tocilizumab suppresses cytokine expression, inflammasome activation and phagocytosis in a cell model of sepsis. Pharmazie, 2016;71:636-9.
- [47] G. R. Burmester, A. Rubbert-Roth, A. Cantagrel, S. Hall, P. Leszczynski, D. Feldman *et al.* Efficacy and safety of subcutaneous tocilizumab versus intravenous tocilizumab in combination with traditional DMARDs in patients with RA at week 97 (SUMMACTA). Ann Rheum Dis, 2016;75:68-74.

- [48] F. Bennardo, C. Buffone, A. Giudice. New therapeutic opportunities for COVID-19 patients with Tocilizumab: Possible correlation of interleukin-6 receptor inhibitors with osteonecrosis of the jaws. Oral Oncol, 2020:104659.
- [49] J. I. Henter, C. B. Chow, C. W. Leung, Y. L. Lau. Cytotoxic therapy for severe avian influenza A (H5N1) infection. Lancet, 2006;367:870-3.
- [50] P. Mehta, D. F. McAuley, M. Brown, E. Sanchez, R. S. Tattersall, J. J. Manson *et al.* COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet, 2020.
- [51] The management of COVID-19 (the sixth edition). 2020.
- [52] N. M. Noda-Nicolau, J. Polettini, M. G. da Silva, M. R. Peltier, R. Menon. Polybacterial stimulation suggests discrete IL-6/IL-6R signaling in human fetal membranes: Potential implications on IL-6 bioactivity. J Reprod Immunol, 2018;126:60-8.
- [53] Y. Liu, Y. Yang, C. Zhang, F. Huang, F. Wang, J. Yuan *et al.* Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci, 2020.
- [54] Z. Wang, B. Yang, Q. Li, L. Wen, R. Zhang. Clinical Features of 69 Cases with Coronavirus Disease 2019 in Wuhan, China. Clin Infect Dis, 2020.
- [55] J. Cui, F. Li, Z. L. Shi. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol, 2019;17:181-92.
- [56] P. Zhou, X. L. Yang, X. G. Wang, B. Hu, L. Zhang, W. Zhang *et al.* A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020;579:270-3.
- [57] P. Gautret, J. C. Lagier, P. Parola, V. T. Hoang, L. Meddeb, M. Mailhe *et al*. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents, 2020:105949.
- [58] D. Sun, H. Li, X. X. Lu, H. Xiao, J. Ren, F. R. Zhang *et al.* Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: a single center's observational study. World J Pediatr, 2020.
- [59] Y. Jiang, J. Xu, C. Zhou, Z. Wu, S. Zhong, J. Liu *et al.* Characterization of cytokine/chemokine profiles of severe acute respiratory syndrome. Am J Respir Crit Care Med, 2005;171:850-7.
- [60] K. J. Huang, I. J. Su, M. Theron, Y. C. Wu, S. K. Lai, C. C. Liu *et al.* An interferon-gamma-related cytokine storm in SARS patients. J Med Virol, 2005;75:185-94.
- [61] J. Y. Chien, P. R. Hsueh, W. C. Cheng, C. J. Yu, P. C. Yang. Temporal changes in cytokine/chemokine profiles and pulmonary involvement in severe acute respiratory syndrome. Respirology, 2006;11:715-22.
- [62] W. H. Mahallawi, O. F. Khabour, Q. Zhang, H. M. Makhdoum, B. A. Suliman. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine, 2018;104:8-13.
- [63] E. S. Kim, P. G. Choe, W. B. Park, H. S. Oh, E. J. Kim, E. Y. Nam et al. Clinical Progression and Cytokine Profiles of Middle East Respiratory Syndrome Coronavirus Infection. J Korean Med Sci, 2016;31:1717-25.
- [64] F. Minoia, S. Davi, A. Horne, F. Bovis, E. Demirkaya, J. Akikusa *et al.* Dissecting the heterogeneity of macrophage activation syndrome complicating systemic juvenile idiopathic arthritis. J Rheumatol, 2015;42:994-1001.

- [65] R. Rios-Fernandez, J. L. Callejas-Rubio, S. Garcia-Rodriguez, J. Sancho, M. Zubiaur, N. Ortego-Centeno. Tocilizumab as an Adjuvant Therapy for Hemophagocytic Lymphohistiocytosis Associated With Visceral Leishmaniasis. Am J Ther, 2016;23:e1193-6.
- [66] C. Kotch, D. Barrett, D. T. Teachey. Tocilizumab for the treatment of chimeric antigen receptor T cell-induced cytokine release syndrome. Expert Rev Clin Immunol, 2019;15:813-22.
- [67] F. Chen, D. T. Teachey, E. Pequignot, N. Frey, D. Porter, S. L. Maude *et al.* Measuring IL-6 and sIL-6R in serum from patients treated with tocilizumab and/or siltuximab following CAR T cell therapy. J Immunol Methods, 2016;434:1-8.
- [68] P. M. Miettunen, A. Narendran, A. Jayanthan, E. M. Behrens, R. Q. Cron. Successful treatment of severe paediatric rheumatic disease-associated macrophage activation syndrome with interleukin-1 inhibition following conventional immunosuppressive therapy: case series with 12 patients. Rheumatology (Oxford), 2011;50:417-9.
- [69] T. Giavridis, S. J. C. van der Stegen, J. Eyquem, M. Hamieh, A. Piersigilli, M. Sadelain. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med, 2018;24:731-8.
- [70] A. J. Ocon, B. D. Bhatt, C. Miller, R. A. Peredo. Safe usage of anakinra and dexamethasone to treat refractory hemophagocytic lymphohistiocytosis secondary to acute disseminated histoplasmosis in a patient with HIV/AIDS. BMJ Case Rep, 2017;2017.
- [71] N. Ruperto, H. I. Brunner, P. Quartier, T. Constantin, N. Wulffraat, G. Horneff *et al.* Two randomized trials of canakinumab in systemic juvenile idiopathic arthritis. N Engl J Med, 2012;367:2396-406.
- [72] A. A. Grom, N. T. Ilowite, V. Pascual, H. I. Brunner, A. Martini, D. Lovell *et al.* Rate and Clinical Presentation of Macrophage Activation Syndrome in Patients With Systemic Juvenile Idiopathic Arthritis Treated With Canakinumab. Arthritis Rheumatol, 2016;68:218-28.
- [73] N. T. Ilowite, K. Prather, Y. Lokhnygina, L. E. Schanberg, M. Elder, D. Milojevic *et al.*Randomized, double-blind, placebo-controlled trial of the efficacy and safety of rilonacept in the treatment of systemic juvenile idiopathic arthritis. Arthritis Rheumatol, 2014;66:2570-9.
- [74] D. Chellapandian, R. Das, K. Zelley, S. J. Wiener, H. Zhao, D. T. Teachey *et al.* Treatment of Epstein Barr virus-induced haemophagocytic lymphohistiocytosis with rituximab-containing chemo-immunotherapeutic regimens. Br J Haematol, 2013;162:376-82.
- [75] Z. Junga, R. Stitt, C. Tracy, M. Keith. Novel use of rituximab in macrophage activation syndrome secondary to systemic lupus erythematosus. BMJ Case Rep, 2017;2017.
- [76] C. Cutler, H. T. Kim, B. Bindra, S. Sarantopoulos, V. T. Ho, Y. B. Chen *et al.* Rituximab prophylaxis prevents corticosteroid-requiring chronic GVHD after allogeneic peripheral blood stem cell transplantation: results of a phase 2 trial. Blood, 2013;122:1510-7.
- [77] M. P. Keith, C. Pitchford, W. B. Bernstein. Treatment of hemophagocytic lymphohistiocytosis with alemtuzumab in systemic lupus erythematosus. J Clin Rheumatol, 2012;18:134-7.
- [78] R. A. Marsh, C. E. Allen, K. L. McClain, J. L. Weinstein, J. Kanter, J. Skiles *et al.* Salvage therapy of refractory hemophagocytic lymphohistiocytosis with alemtuzumab. Pediatr Blood Cancer, 2013;60:101-9.

- [79] E. Bergsten, A. Horne, M. Arico, I. Astigarraga, R. M. Egeler, A. H. Filipovich *et al.* Confirmed efficacy of etoposide and dexamethasone in HLH treatment: long-term results of the cooperative HLH-2004 study. Blood, 2017;130:2728-38.
- [80] H. B. Park, K. Oh, N. Garmaa, M. W. Seo, O. J. Byoun, H. Y. Lee *et al.* CP-690550, a Janus kinase inhibitor, suppresses CD4+ T-cell-mediated acute graft-versus-host disease by inhibiting the interferon-gamma pathway. Transplantation, 2010;90:825-35.
- [81] N. Okiyama, Y. Furumoto, V. A. Villarroel, J. T. Linton, W. L. Tsai, J. Gutermuth *et al.*Reversal of CD8 T-cell-mediated mucocutaneous graft-versus-host-like disease by the JAK inhibitor tofacitinib. J Invest Dermatol, 2014;134;992-1000.
- [82] S. W. Canna, C. Girard, L. Malle, A. de Jesus, N. Romberg, J. Kelsen *et al.* Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition. J Allergy Clin Immunol, 2017;139:1698-701.
- [83] Z. T. Al-Salama. Emapalumab: First Global Approval. Drugs, 2019;79:99-103.
- [84] T. Henzan, K. Nagafuji, H. Tsukamoto, T. Miyamoto, H. Gondo, S. Imashuku *et al.* Success with infliximab in treating refractory hemophagocytic lymphohistiocytosis. Am J Hematol, 2006;81:59-61.
- [85] E. K. Ozer, M. T. Goktas, I. Kilinc, A. Toker, H. Bariskaner, C. Ugurluoglu *et al.* Infliximab alleviates the mortality, mesenteric hypoperfusion, aortic dysfunction, and multiple organ damage in septic rats. Can J Physiol Pharmacol, 2017;95:866-72.
- [86] F. F. Yalniz, M. Hefazi, K. McCullough, M. R. Litzow, W. J. Hogan, R. Wolf *et al.* Safety and Efficacy of Infliximab Therapy in the Setting of Steroid-Refractory Acute Graft-versus-Host Disease. Biol Blood Marrow Transplant, 2017;23:1478-84.
- [87] A. Flammiger, W. Fiedler, U. Bacher, C. Bokemeyer, M. Schneider, M. Binder. Critical imbalance of TNF-alpha and soluble TNF receptor 1 in a patient with macrophage activation syndrome: potential implications for diagnostics and treatment. Acta Haematol, 2012;128:69-72.
- [88] C. L. Kitko, T. Braun, D. R. Couriel, S. W. Choi, J. Connelly, S. Hoffmann *et al.* Combination Therapy for Graft-versus-Host Disease Prophylaxis with Etanercept and Extracorporeal Photopheresis: Results of a Phase II Clinical Trial. Biol Blood Marrow Transplant, 2016;22:862-8.
- [89] S. A. Grupp, M. Kalos, D. Barrett, R. Aplenc, D. L. Porter, S. R. Rheingold *et al.* Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med, 2013;368:1509-18.
- [90] S. Chen, G. Liu, J. Chen, A. Hu, L. Zhang, W. Sun *et al.* Ponatinib Protects Mice From Lethal Influenza Infection by Suppressing Cytokine Storm. Front Immunol, 2019;10:1393.
- [91] B. Rochwerg, S. J. Oczkowski, R. A. C. Siemieniuk, T. Agoritsas, E. Belley-Cote, F. D'Aragon *et al.* Corticosteroids in Sepsis: An Updated Systematic Review and Meta-Analysis. Crit Care Med, 2018;46:1411-20.
- [92] U. Emmenegger, U. Frey, A. Reimers, C. Fux, D. Semela, P. Cottagnoud *et al*. Hyperferritinemia as indicator for intravenous immunoglobulin treatment in reactive macrophage activation syndromes. Am J Hematol, 2001;68:4-10.

- [93] J. I. Henter, A. Horne, M. Arico, R. M. Egeler, A. H. Filipovich, S. Imashuku *et al.* HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer, 2007;48:124-31.
- [94] T. Aoyagi, Y. Sato, M. Toyama, K. Oshima, K. Kawakami, M. Kaku. Etoposide and Corticosteroid Combination Therapy Improves Acute Respiratory Distress Syndrome in Mice. Shock, 2019;52:83-91.
- [95] A. H. de Wilde, J. C. Zevenhoven-Dobbe, Y. van der Meer, V. Thiel, K. Narayanan, S. Makino *et al.* Cyclosporin A inhibits the replication of diverse coronaviruses. J Gen Virol, 2011;92;2542-8.
- [96] T. D. Bennett, M. Fluchel, A. O. Hersh, K. N. Hayward, A. L. Hersh, T. V. Brogan *et al.* Macrophage activation syndrome in children with systemic lupus erythematosus and children with juvenile idiopathic arthritis. Arthritis Rheum, 2012;64:4135-42.
- [97] G. Lorenz, L. Schul, F. Schraml, K. M. Riedhammer, H. Einwachter, M. Verbeek *et al.* Adult macrophage activation syndrome-haemophagocytic lymphohistiocytosis: 'of plasma exchange and immunosuppressive escalation strategies' a single centre reflection. Lupus, 2020:961203320901594.
- [98] X. Liu, Y. Zhang, X. Xu, W. Du, K. Su, C. Zhu *et al.* Evaluation of plasma exchange and continuous veno-venous hemofiltration for the treatment of severe avian influenza A (H7N9): a cohort study. Ther Apher Dial, 2015;19:178-84.
- [99] K. Szakszon, I. Csizy, T. Szabo. Early introduction of peritoneal dialysis may improve survival in severe sepsis. Pediatr Emerg Care, 2009;25:599-602.
- [100] Y. T. Wang, J. J. Fu, X. L. Li, Y. R. Li, C. F. Li, C. Y. Zhou. Effects of hemodialysis and hemoperfusion on inflammatory factors and nuclear transcription factors in peripheral blood cell of multiple organ dysfunction syndrome. Eur Rev Med Pharmacol Sci, 2016;20:745-50.
- [101] C. Greil, F. Roether, P. La Rosee, B. Grimbacher, D. Duerschmied, K. Warnatz. Rescue of Cytokine Storm Due to HLH by Hemoadsorption in a CTLA4-Deficient Patient. J Clin Immunol, 2017;37:273-6.
- [102] U. Hamid, A. Krasnodembskaya, M. Fitzgerald, M. Shyamsundar, A. Kissenpfennig, C. Scott *et al.* Aspirin reduces lipopolysaccharide-induced pulmonary inflammation in human models of ARDS. Thorax, 2017;72:971-80.
- [103] S. N. Lauder, P. R. Taylor, S. R. Clark, R. L. Evans, J. P. Hindley, K. Smart *et al.* Paracetamol reduces influenza-induced immunopathology in a mouse model of infection without compromising virus clearance or the generation of protective immunity. Thorax, 2011;66:368-74.
- [104] G. Zheng, L. Huang, H. Tong, Q. Shu, Y. Hu, M. Ge *et al.* Treatment of acute respiratory distress syndrome with allogeneic adipose-derived mesenchymal stem cells: a randomized, placebo-controlled pilot study. Respir Res, 2014;15:39.
- [105] J. G. Wilson, K. D. Liu, H. Zhuo, L. Caballero, M. McMillan, X. Fang *et al.* Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respir Med, 2015;3:24-32.
- [106] N. Mahlaoui, M. Ouachee-Chardin, G. de Saint Basile, B. Neven, C. Picard, S. Blanche *et al.* Immunotherapy of familial hemophagocytic lymphohistiocytosis with antithymocyte globulins: a single-center retrospective report of 38 patients. Pediatrics, 2007;120:e622-8.

- [107] P. Kruger, M. Bailey, R. Bellomo, D. J. Cooper, M. Harward, A. Higgins *et al.* A multicenter randomized trial of atorvastatin therapy in intensive care patients with severe sepsis. Am J Respir Crit Care Med, 2013;187:743-50.
- [108] H. Yasuda, A. Leelahavanichkul, S. Tsunoda, J. W. Dear, Y. Takahashi, S. Ito *et al*. Chloroquine and inhibition of Toll-like receptor 9 protect from sepsis-induced acute kidney injury. Am J Physiol Renal Physiol, 2008;294:F1050-8.
- [109] M. Yang, L. Cao, M. Xie, Y. Yu, R. Kang, L. Yang et al. Chloroquine inhibits HMGB1 inflammatory signaling and protects mice from lethal sepsis. Biochem Pharmacol, 2013;86:410-8.
- [110] J. R. Teijaro, K. B. Walsh, S. Cahalan, D. M. Fremgen, E. Roberts, F. Scott *et al.* Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell, 2011;146:980-91.
- [111] Q. Cheng, S. Ma, D. Lin, Y. Mei, H. Gong, L. Lei *et al.* The S1P1 receptor-selective agonist CYM-5442 reduces the severity of acute GVHD by inhibiting macrophage recruitment. Cell Mol Immunol, 2015;12:681-91.