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» Cytokine release syndrome (CRS) contributes tetlifeatening multiple organ

dysfunction in coronavirus disease 2019 (COVID-48) represents a potential

therapeutic target.

» Mechanistic understanding of CRS permits the desfgrovel immunotherapies.

« Targeting key molecules within the inflammatoryal§ihe network, such as

interleukin-6 (IL-6), is a novel strategy for COVAD®-induced CRS and warrants

further investigation.

Abstract

The emergent outbreak of coronavirus disease 2008/(D-19) _has caused a global

pandemic. Acute respiratory distress syndrome (AR&% multiorgan dysfunction
are among the leading causes of death in critichlyatients with COVID-19. The
elevated inflammatory cytokines suggest that akegostorm, also known as cytokine
release syndrome (CRS), may play a major role & ghthology of COVID-19.
However, the efficacy of corticosteroids, commoutyized antiinflammatory agents,
to treat COVID-19-induced CRS is controversial. fEhies an urgent need for novel
therapies to treat COVID-19-induced CRS. Here, iseuss the pathogenesis of severe
acute respiratory syndrome (SARS)-induced CRS, emenphe CRS in COVID-19
with that in SARS and Middle East respiratory symde (MERS), and summarize the

existing therapies for CRS. We propose to utilizgerleukin-6 (IL-6) blockade to
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manage COVID-19-induced CRS and discuss severarfathat should be taken into

consideration for its clinical application.

Keywords. Coronavirus disease 2019; Cytokine release syndrbtezleukin-6;

Tocilizumab

Manuscript

The newly emerging coronavirus disease 2019 (COlAR-first reported in Wuhan,

China, has swept across 202 countries with stunmpgality. The World Health

Organization (WHO) has declared this deadly outbmeaandemic, with tremendous

ramifications impacting every life. By March 27, 28) the number of deaths had

climbed to 23,495 among 512,701 confirmed cas&¢H®O reports [1]. This strain has

been the third most lethal pathogenic human coromgvfollowing severe acute

respiratory syndrome (SARS) and Middle East regmiya syndrome (MERS)

coronaviruses in 2003 and 2012, respectively. Sewaeute respiratory syndrome
coronavirus 2 (SARS-CoV-2), a novel beta-coronayiftas been identified as the
pathogen for COVID-19 [2]. SARS-CoV-2 targets thad and likely other organs as
well, leading to multiorgan damage by binding te #mgiotensin-converting enzyme 2
(ACEZ2) receptor [2], a cell surface protein higleypressed in the lung, heart and

kidney [3].
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Clinical data from Wuhan, China, showed that appnately 17.7-32.0% of
patients require intensive care uid@U)-level care, with approximately 9.5-12.0 days
from symptom onset to multiorgan dysfunctions, nigmnacute respiratory distress
syndrome (ARDS) (67%), acute kidney injury (29%gute cardiac injury (23%), and
liver dysfunction (29%) [4-6]. The mortality of agally ill patients is as high as
49.0-61.5% [4, 5]. Evidence suggests that CRS mypigigy a major role in severe
COVID-19. Inflammatory cytokines and chemokinegliiing interleukin-6 (IL-6),
interleukin-B (IL-1B), induced protein 10 (IP10) and monocyte chemactdnt
protein-1 (MCP-1), were significantly elevated i©€ID-19 patients, and some were
more commonly seen in severe patients than in nensepatients (Table 1). In

COVID-19 patients with elevated inflammatory cytoés, postmortem pathology has

revealed tissue necrosis and interstitial macroplaam monocyte infiltrations in the

lung, heart and gastrointestinal mucosa [7, 8]. @dwer, severe lymphopenia with

hyperactivated proinflammatory T cells [8] and @demed requlatory T cells [9] is

commonly seen in critically ill patients, suggegtitysregulated immune responses.

CRS refers to an uncontrolled and overwhelmingasdeof proinflammatory
mediators by an overly activated immune system .[IORS is a common
immunopathogenesis underlying many pathologicatgsses, such as ARDS, sepsis,
graft-versus-host disease (GvHD), macrophage didivayndrome (MAS) induced

by rheumatic diseases, and primary and secondarynopteagocytic
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lymphohistiocytosis (HLH) [11]. Recently, CRS halscabeen reported to be a
complication of immunotherapies, such as chimentgen receptor (CAR) T cell
therapies [12]. Previous experience with SARS artR8 has also revealed florid

CRS in critically ill patients (Table 1). Studieaye shown that ARDS occurs in some

SARS patients despite a diminishing viral load, ggsting that an exuberant host

immune response rather than viral virulence is ipbssresponsible for tissue

pathologies. Therefore, antiviral therapy alone im@ynadequate [13]. Corticosteroids,

one of the most widely utilized anti-inflammatorygests, are still commonly
prescribed in treating COVID-19 patients (72.2%hia ICU setting) [14]. However, as
outlined in the Chinese guidelines of COVID-19 [Iysicians need to be cautious of
steroid use due to its nebulous benefits in thengedf viral respiratory infection.
Several studies even reported inferior outcomesSARS patients treated with
corticosteroids [16]. Another concern of corticostds is their short- and long-term
adverse effects. More than half of SARS patiergatad with corticosteroids suffer
from joint pain and bone marrow abnormalities [XJF{her therapies aiming to dampen
excessive serum inflammatory mediators, such asmapheresis or continuous renal
replacement therapy (CRRT), either require spee@faipment or lack documented
efficacy [18]. Thus, there is still an unmet neexdthe treatment of COVID-19-induced
CRS [19]. In the past decade, immunotherapy hasrgesht strides in managing CRS

of various etiologies, including autoimmunity, ngadancy and CAR T cell therapies
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(Table 2). We propose herein that attenuating éterdental host immune response by

immunomodulators may be a beneficial addition tivaml therapy.

A better understanding of the pathogenesis unagyl{ RS may facilitate the
design of novel immunotherapies. The immunologicmaaism of CRS induced by
coronaviruses is not fully elucidated, and existiada are largely derived from SARS
coronavirus (SARS-CoV), a close counterpart of SARY-2. It is believed that
delayed kinetics of virus clearance are the triggbe delayed type I interferon (IFN)
response plays a pivotal role in the process of SAR the initial phase, SARS-CoV
evades pattern recognition receptors (PRRs) aradjanizes the type | IFN response
by inducing double-membrane vesicles that lack RRRRNA capping and proteins
that inhibit PRR downstream cascades [20, 21]. ddmapened type | IFN in airway
and alveolar epithelial cells results in rapid Virgplication. Plasmacytoid dendritic
cells (pDCs) and macrophages are exceptions, withl aesponse to SARS-CoV,
launching a delayed but robust type | IFN resparse releasing other inflammatory
cytokines against SARS-CoV [21, 22]. Consequerttlg, activation of type | IFN
signaling cascades induces extensive IFN-stimulatede (ISG) expression and
attracts inflammatory monocyte-macrophages (IMMs)trophils, dendritic cells and
natural killer cells to the lung. This process aifigg the innate response, forming a
cytokine-driven vicious cycle [21]. The virus-sgeciT cell immune response is

indispensable for virus clearance, an essentig@ steprotecting mice from lethal
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SARS-CoV infection [23]. Both regulatory T cellscamaive T cells negatively regulate
the activated innate immune responses by cell-tgéractions [24]. Exuberant
production of cytokines, such as type | IFN, diraives T cell responses by inducing T
cell apoptosis to aggravate CRS and lymphopeniabasrved in SARS patients [21,
25]. The overwhelming proinflammatory cytokines ateemokines cause localized
pulmonary injury characterized by diffuse alveoldamage with epithelial and
endothelial apoptosis, dysregulated coagulationpamthonary fibrinolysis. They may
also leak into systemic circulation to cause exthamonary manifestations and

eventually multiple organ dysfunction syndrome [28].

Among the excessive cytokines produced by activatacrophages, IL-6 is one of
the key cytokines. Elevated IL-6 levels were obedrn patients with SARS and were
correlated with disease severity (Table 1) [28}6llactivates its downstream Janus
kinase (JAK) signal by binding the transmembracie-gignaling) or soluble form
(trans-signaling) of the IL-6 receptor (IL-6R) and intetiag with membrane-bound
gp130 [29]. Excessive IL-6 signaling leads to a iayrof biological effects that
contribute to organ damage, such as maturing naieells into effector T cells,
inducing vascular endothelial growth factor (VEG#pression in epithelial cells,

increasing vessel permeability [30], and reducingaoardium contractility [31].

The elevated cytokine levels may also be respomsiblthe lethal complications of

COVID-19. As shown in Table 1, patients with COVID; SARS or MERS presented

7
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distinct cytokine profiles. Patients with COVID-J®esented elevated T helper 2
cytokines (interleukin-4) in addition to T helperc¥tokines compared to those in

patients with SARS or MERS. There are many potettierapies targeting the host

immune system that may be effective for COVID-1%chsas inflammatory cytokine

blockade (IL-6, IL-1, and IEN), stem cell therapymune cell depletion, transfusion of

convalescent plasma and artificial extracorporeal Isupport [32], among which we

believe IL-6 blockade is a promising strateqy f@®WID-induced CRS. We noticed

that elevated IL-6 levels were consistently repbite several studies of COVID-19

[33-36] and might serve as a predictive biomarkerdisease severity [37A large

retrospective cohort study found that IL-6 levelsr& correlated with mortality in

patients with COVID-19 [6] Mechanistically, IL-6 is essential for the geneyatof T

helper 17 (Th17) cells in the dendritic cell-T delleraction [30]. The excessive IL-6
may explain the overly activated Th1l7 cells obsgrie COVID-19 patients, as
reported by Xuet al [8]. Although clinical data of IL-6 blockade in rus

infection-related CRS are unavailable, animal #sidiof SARS-CoV have
demonstrated that inhibiting nuclear factor kapp@B-«B), a key transcription factor
of IL-6, or infecting animals with SARS-CoV lackirtge coronavirus envelope (E)
protein, a strong stimulus to N&B signaling, increased animal survival, with rediice
IL-6 levels [38]. Interestingly, we noticed thatetlit proteins of SARS-CoV-2 (Ref
sequence QHD43418.1) and SARS-CoV (Ref sequence328854.1) share 95%

homology. Since the E protein is the determinantinflence and mediates the host
8
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immune reaction to coronavirus [39, 40], it is m@@able to speculate that both viruses
elicit a similar immune response. Hence, targetlhgs may be effective for

COVID-induced CRS.

Tocilizumab is a recombinant humanized monoclomdl-la [16R antibody. It
binds both soluble and membrar#und IL/6R to inhibit IL 16/ /mediatedcis- and
trans-signaling [41]. Tocilizumab has been approved bg U.S. Food and Drug
Administration for the treatment of severe CAR Tl cenduced CRS (Table 2) [12].
As mentioned earlier, CRS is the most severe adweifect induced by CAR T cell
therapy, with an incidence of 50-100% [41]. It elibved that binding of the CAR T
cell receptor to its antigen induces the activatbbystander cells to release massive
amounts of interferoy (IFN-y) and tumor necrosis factar{TNF-a), which further
activate innate immune cells, including macrophaayes endothelial cells, to secrete
IL-6 and other inflammatory mediators [42]. IL-6ascentral mediator of toxicity in
CRS, and its level correlates with the severitfC&R T cell linduced CRS [12, 43].
Clinically, severe cases of CAR-T induced CRS presdth fever, hypoxia, acute
renal failure, hypotension, and cardiac arrhyththat often warrants ICU admission
[12]. Tocilizumab showed promising efficacy in sev€RS. After one or two doses of
tocilizumab, 69% of patients responded within 14ysjafor whom fever and
hypotension resolved within hours, and vasopressotdd be weaned quickly in

several days [10, 41]. The effect of tocilizumab hko been reported in CRS related to
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several other conditions, such as sepsis, GvHD A& [44-46]. Moreover,
tocilizumab is safe for both pediatric and adultiggas, as no adverse reactions have
been reported in a retrospective analysis of p@ati@ith CAR T cell-induced CRS [41].
The most common serious adverse effect is infestionpatients with rheumatoid
arthritis, in which chronic therapy is maintainedr fa longer period of time
(3.11-3.47/100 person-years with 8 mg/kg tocilizbreaery 4 weeks) [47]. Moreover,

a possible correlation between tocilizumab and nain-related osteonecrosis of the

jaws was reported in patients with osteoporosis[48]

Given the efficacy of tocilizumab in CRS and theqgpal role of IL-6 in COVID-19,
we propose to repurpose tocilizumab to treat sesv@ses of COVID-19. Regarding its
clinical use, we suggest taking the following fastoto consideration and hope that
future clinical trials will be able to address thefr) Diagnosis criteria. There is
currently no consensus in diagnosing CRS in COV8DHarly diagnosis of CRS in
COVID-19 patients and prompt initiation of immunodutatory treatment may be

beneficial, as suggested by the experience in HUH].[ Prompt screening of

COVID-19 patients with Hscore, a diagnostic scareHLH, may help to discriminate

patients with CRS [50P) Disease severity grading system. Experience with

immunotherapy-triggered CRS suggests that tocilefuns indicated only for severe
cases, while the risk benefit assessment favorp®ymatic management for mild

cases [10]. This approach is rationalized by therywat aggressive antiinflammation

10
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therapy may negate the effect of therapeutic bioldg, such as CAR T cells. This
principle is not shared in viral infections, suchk @0VID-19, in which timely
intervention in mild or moderate patients may preyaogression. A disease severity
grading system may provide an objective tool tessthe most appropriate timing to
initiate tocilizumab treatment. Currently, the Gése guidelines for COVID-19 grade
patients into mild, moderate, severe and critigavital signs, radiographic findings
and complications [51]. It is currently unclear waiipopulation may benefit the most
from the treatment. 3) Combined antiviral treatmeBased on experience with
corticosteroids, immunosuppressive agents may dellays clearance. Combining
immunomodulators with antiviral agents may addHertbenefit. Preliminary results
from clinical trials of several antiviral treatmenare expected to be available soon

(remdesivir [NCT04252664, NCTO04257656], favipiraviiChiCTR2000029600,

NCT04310228] and _chloroquine [ChiCTR2000029609, REAB6503]). 4)

Secondary infection. Infection is a common adveefect associated with
immunomodulators such as tocilizumab. Critically €OVID-19 patients are
susceptible to secondary infection and may have@arased risk of comorbid chronic
infections, such as hepatitis B and tuberculosis If5is unclear to what degree
tocilizumab contributes to secondary infection. egnthe goal of treatment is to
prevent or attenuate life-threatening inflammatwanle minimizing the potential of
secondary infection. For this reason, prophylaatitibiotics may be indicated, and

bacteriologic and fungal assessments are of grepbrtance. For patients with
11
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secondary infection or coexisting chronic infectigdhe utilization of tocilizumab
should be cautious. 5) Cytokine measurement. CyeHKevels may serve as
biomarkers for risk stratification and prognosispr&vious cohort study suggested that
IL-6 levels were significantly elevated in COVID-p@tients but varied considerably
among both ICU and non-ICU patients [34]. This obagon raises the question of
whether IL-6 blockade is effective only in patiemtsh elevated serum IL-6 levels. If
so, IL-6 measurement may be an indispensable p#neayrading system. Moreover,

the IL-6 level alone may not be sufficient to refl@s functional downstream effects

[52]. An assay that distinquishes functional ILkérh total IL-6 may provide a refined

approach to guide therapeutic decisions. C-reaginatein (CRP), an acute-phase
inflammatory protein synthesized by IL-6-dependepatic biosynthesis, is a reliable
marker of IL-6 bioactivity and is used to predicRE severity and monitor IL-6

blockade efficacy for patients with CAR T cell-irmd CRS [10, 12]. The CRP level in

virus-induced CRS remains to be determined. Maglies suggested that elevated

CRP levels were associated with severe COVID-19%3754], with a few exceptions

[35]. Nevertheless, future studies on biomarkeesraeded for the purpose of risk
stratification and therapeutic effect monitorindnefe is also a battery of biological
agents available that target various critical malles in the inflammatory network
(Table 2), such as IL-1, IL-18, TNF, and IFN, onuda kinase/signal transducer and
activator of transcription (JAK/STAT) signaling. @be agents may also be beneficial,

and if so, routine inflammatory cytokine measuremgmvarranted.
12
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Notably, SARS-CoV, MERS-CoV and SARS-CoV-2 wereaahsidered to have

originated in bats, a nature reservoir of variom®navirus species with high genomic

diversity [55, 56]. It is unclear how many bat coawiruses are directly or indirectly

transmissible to humans and how many have the tiaitém cause disease, especially

for those that share the viral spike sequence aedcapable of using the human

ACE2 receptor for entry [55]. Thus, it is highhkdily that a novel bat coronavirus

could cause future epidemics. For future epidenteparedness and to reduce

mortality in COVID-19 patients, global effort is eded to promote novel therapy to
treat virus-induced CRS during the COVID-19 outkreRotential therapies available
for CRS are summarized in Table 2. We hope tha #dissessment will spur future
clinical trials on COVID-19-induced CRS. Utilizirngologicals such as tocilizumab to

treat virus-induced CRS is a new fieldMany other therapeutic options, including

hydroxychloroquine combined with azithromycin (N@QIB22123,

NCT04321278)[57], mesenchymal stem cell therapyTB¥269525, NCT04252118)

and convalescent plasma (NCT04292340), have mowdl dlinical trials for

COVID-19. We look forward to seeing additional dhgy progress and clinical

evidence in this area.
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284 Table 1. The levels of cytokines in patients witb\dD-19, SARS and MERS versus
285 those in normal controls

Cytokines COVID-19 SARS MERS
IL-6 1 in some[36, 58pr in 1 Unknown butt in severe than
severe cases|6, 34, 54 in mild cases
IL-2 1 1 or NS NS
IL-1B 1 NS Unknown
IL-8 1 1 Unknown
IL-17 1 Unknown 0
IFN-y 1 NS 1
TNF-o 1 NS 1
IP10 1 1 Unknown butt in severe than
in mild cases
MCP-1 1 1 or NS Unknown
IL-10 1 NS or1 in convalescent 1
cases
IL-4 1 NS or| in convalescent NS
cases
Ref [6, 33, 34, 36, 54, 58] [28, 59-61] [62, 63]

286 Up or down arrows indicate higher or lower levedssus normal controls, respectively. AbbreviatiddS; no
287  significant change versus normal controls, IL: itetekin, IFN+y: interferony, IP: induced protein, MCP: monocyte

288  chemoattractant protein, TNE-tumor necrosis factar.

15



Table 2. Summary of candidate therapies for cy®kéalease syndrome (CRS) and related diseases

Therapy Trigger/associated M echanism Statusfor hypercytokinemia Approved | Ref
diseases by U.S.
FDA
Biologic therapy.
Tocilizumab MAS, CRS, Human monoclonal anti-IL-6 ® Approval for CAR T cell therapy-associated CRS Yes [44,
visceral receptor antibody 45,
_ o ® Phase 4 for SARS-CoV-2 (ChiCTR2000029765,
leishmaniasis-asso¢ 64-6
. NCT04310228, NCT04315480, NCT04317092...)
iated HLH, GvHD 6]
and sepsis ® Phase 2 for GvHD (NCT02206035, NCT04070781,
NCT03434730, NCT03699631)
Siltuximab CRS Anti-IL-6 antibody ® Preclinical for CRS Yes [67]
Anakinra MAS, sepsis, IL-1 receptor antagonist blocking ® Phase 1 for MAS (NCT02780583) Yes [68-
HIV/AIDS-associat | IL-1o and IL-18 70]
® Phase 2 for MAS and sepsis (NCT03332225)
ed HLH and CRS
Canakinumab MAS Human monoclonal anti-ILf ® Phase 3 for MAS (NCT00889863, NCT00886769, Yes [71,
antibody NCT00891046 ) 72]
Rilonacep MAS Neutralizing IL-Io and IL-18 ® Randomized controlled trial for MAS Yes [73

16




Rituximab Epstein-Barr Human monoclonal anti-CD20 | ® Phase 1-2 for GvHD (NCT04235036, NCT01135641, | Yes [74-
virus-induced HLH,| antibody to deplete B cells NCT00350545, NCT01001780...) 76]
GvHD and MAS
Alemtuzumab HLH, GvHD Human monoclonal anti-CD52 | ® Phase 2 for HLH (NCT02472054, NCT02385110) Yes [77,
antibody 78]
® Phase 1-2 for GvHD (NCT00410657, NCT00495755)
Ruxolitinib HLH, GvHD and Inhibition of JAK/STAT ® Phase 3 for HLH (NCT04120090, NCT03533790) Yes [66,
MAS signaling 79]
® Phase 4 for GvHD (ChiCTR1900024408)
Tofacitinib GvHD Selective inhibition of JAK1 ® Preclinical for GvHD Yes [80,
81]
Tadekinig alfa NLRC4-associated | Recombinant human ® Phase 3 for NLRC4-associated MAS (NCT03512314, | No [82]
MAS IL-18-binding protein NCT03113760)
(rhIL-18BP) to tightly bind IL-18
Emapalumab HLH Anti-IFN y antibody ® Approval for primary HLH Yes [83]
Infliximab HLH, GvHD and Human monoclonal anti-TNF ® Phase 1-2 for GvHD (NCT00228839, NCT00228839, | Yes [84-
sepsis antibody NCT00201799) 86]
® Phase 4 for GvHD in combination with daclizumab

17




(NCT00574470)

Etanercept MAS, GvHD and | Decoy TNF receptor ® Phase 2-3 for GvHD (NCT00726375, NCT00141739 | Yes [87-
CRS competitively inhibiting TNF NCT00141713, NCT00224874, ChiCTR1900024408) 89]
Ponatinib Influenza A Inhibiting breakpoint cluster ® Preclinical for cytokine storms in influenza Yes 019
region-Abelson (BCR-ABL)
kinase to regulate type | IFNs
Alternative therapy: corticosteroids, IVI1G, chemother apeutic agents, blood purification, NSAIDs, cell-based ther apy and others
Corticosteroids Widely used for Inhibition of HAT and recruitment Widely used for cytokine storms Yes [91]
increased levels of | of HDAC2 activity to the
) ) - ® Phase 4 for SARS-CoV-2 severe pneumonia
cytokines inflammatory gene transcriptional
(NCT04263402, ChiCTR2000029386,
complex to downregulate
. ChiCTR2000029656)
inflammatory genes
IVIG Widely used for Inhibition of complement Widely used for cytokine storms Yes [92]
increased levels of | activation, blockade of
) ® Phase 2-3 for SARS-CoV-2 (NCT04261426)
cytokines Fc-fragments and Fc receptors
and neutralization of cytokines
Etoposide Widely used for Selective deletion of activated T| ®  Widely used for HLH in combination of corticostedsi Yes [79,
primary and cells and efficient suppression o and cyclosporine A (HLH2004) 93,

secondary HLH, bu

18




little evidence on inflammatory cytokine productioAm ® Preclinical for ARDS 94]
HLH induced by
influenza or
coronavirus
Cyclosporine A Widely used for Inhibition of the translocation into ®  Widely used for HLH in combination with corticostéds | Yes [79,
primary and the nucleus of NF-AT to lower the and etoposide (HLH2004) 93,
secondary HLH, but activity of overactivated T cells 95]
little evidence on
HLH induced by
influenza or
coronavirus
Cyclophosphamide | MAS A bioprecursor of a nitrogen ® Phase 3 for HLH in combination with Yes [96]
mustard alkylation agent to disturb chemotherapies followed by stem cell transplant
DNA and inhibit cell proliferation (NCT00334672)
® Phase 2 for non-Hodgkin's lymphoma with HLH in
combination with rituximab and other chemotherapies
(NCT01818908)
Mycophenolate MAS and HLH Inhibition of inosine ® Phase 3 for HLH in combination with other Yes [96]
mofetil monophosphate dehydrogenase|to  chemotherapies followed by stem cell transplant

prevent lymphocyte proliferation

(NCT00334672)
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D2

Plasmapheresis Widely used for Extracorporeal removal of Yes 97,
P y P ® Randomized single-blind trial for sepgidNCT01249222) [
increased levels of | cytokines, endotoxins, and 98]
cytokines immunocomplexes
Hemofiltration ® Randomized open-label trial for sepsis (NCT03426943| Yes [18,
98]
Dialysis/hemodialysi ® Randomized open-label trial for sepsis (NCT00537693| Yes [99,
S 100]
Hemadsorption ® Trial for sepsis (NCT00559130, NCT02588794 Yes [101
NCT02288975, NCT04226430) ]
® Randomized open-label trial for transplant-assediat
hypercytokinemia (NCT03145441, NCT04203004
® Randomized single-blind trial for CAR T cell-assated
CRS (NCT04048432
Aspirin Acute lung injury | Antiplatelet effects to reduce ® Phase 2 for ARDS (NCT01659307) Yes 1
and ARDS neutrophil recruitment by platele ]
activation
Selective COX-2 Influenza A Downregulation of COX-2 to ® Phase 3 of celecoxib in combination with oseltanfior Yes [103

decrease proinflammatory
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inhibitors

cytokine levels

influenza A (NCT02108366)

[92)

Mesenchymal ARDS, sepsis and | Alteration of the behavior of both ®  Approval for GvHD in Canada Yes [104
stem/stromal cells GvHD adaptive and innate immune cell ,
® Phase 1-2 for SARS-CoV-2 (NCT04269525,
(MSCs) 105]
NCT04252118, ChiCTR2000029817,
ChiCTR2000029816)
® Phase 1-2 for ARDS (NCT 01775774, NCT 02097641,
NCT03818854, NCT 01902082)
® Phase 1-2 for sepsis (NCT03369275, NCT01849237)
Hematopoietic stem | Primary HLH and | Replacement with a genetically | ®  Widely used for familial HLH in children Yes [93]
cell transplantation | refractory HLH normal bone marrow
Anti-thymocyte Primary HLH, MAS | Selective ablation of T cells ® \Widely used to treat GvHD Yes [10
and GvHD ]
globulin
Statin Sepsis Inhibition of ® Phase 2-3 for sepsis (NCT006768%CGT00452608) Yes [107

hydroxymethylglutaryl-CoA
reductase to reduce

proinflammatory cytokine levels
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Sepsis and MAS Inhibition of Toll-like receptors | ®  Preclinical for sepsis Yes [108

Chloroquine/hydrox
a Y Y and high mobility group box 1 .

chloroquine ® Approval for rheumatic diseases and may reduce
(HMBG1) to reduce 109]

) ) SLE-induced MAS
proinflammatory cytokine levels

® Phase 3-4 for SARS-CoV-2 (NCT04261517,
ChiCTR2000029898...)

S1P1 agonist Influenza A S1P1 receptor agonist ® Preclinical for cytokine storms in influenza A aB&¢HD No [110
downregulating inflammatory .
(CYM-5442) . .
mediators, possibly by NkB 111]
signaling

Abbreviations: MAS: macrophage activation syndro@RBRS: cytokine release syndrome, HLH: hemophagoytiphohistiocytosis, IVIG: intravenous immunogldib, CAR: chimeric
antigen receptor, SARS-CoV-2: severe acute regpyratyndrome coronavirus 2, IL-1: interleukin-1;6L interleukin-6, IL-18: interleukin-18, IFN: intieron. TNF: tumor necrosis factor,
JAK/STAT: the Janus kinase/signal transducer atidator of transcription, GVHD: graft-versus-hosehse, ARDS: acute respiratory distress syndridsdIDS: nonsteroidal

anti-inflammatory drugsCOX-2: cyclo-oxygenase &1P1: sphingosine-1-phosphate receptdtR:xB: nuclear factor kappa-B
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