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ABSTRACT

Objective: Inadequate immunoregulation and elevated inflammation may be risk factors for posttraumatic stress disorder (PTSD), andmi-
crobial inputs are important determinants of immunoregulation; however, the association between the gut microbiota and PTSD is un-
known. This study investigated the gut microbiome in a South African sample of PTSD-affected individuals and trauma-exposed (TE)
controls to identify potential differences in microbial diversity or microbial community structure.

Methods: The Clinician-Administered PTSD Scale for DSM-5 was used to diagnose PTSD according toDiagnostic and Statistical Manual
of Mental Disorders, Fifth Edition criteria. Microbial DNAwas extracted from stool samples obtained from 18 individuals with PTSD and 12
TE control participants. Bacterial 16S ribosomal RNA gene V3/V4 amplicons were generated and sequenced. Microbial community struc-
ture, α-diversity, and β-diversity were analyzed; random forest analysis was used to identify associations between bacterial taxa and PTSD.

Results: There were no differences between PTSD and TE control groups inα- orβ-diversity measures (e.g.,α-diversity: Shannon index,
t = 0.386, p = .70; β-diversity, on the basis of analysis of similarities: Bray-Curtis test statistic = –0.033, p = .70); however, random forest
analysis highlighted three phyla as important to distinguish PTSD status: Actinobacteria, Lentisphaerae, and Verrucomicrobia. Decreased
total abundance of these taxa was associated with higher Clinician-Administered PTSD Scale scores (r = –0.387, p = .035).

Conclusions: In this exploratory study, measures of overall microbial diversity were similar among individuals with PTSD and TE controls;
however, decreased total abundance of Actinobacteria, Lentisphaerae, and Verrucomicrobia was associated with PTSD status.
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INTRODUCTION

Violence and trauma are highly prevalent in South Africa (SA),

with approximately 75% of the population experiencing

at least one traumatic event and more than half experiencing

multiple traumatic events within their lifetime (1,2). Interpersonal

violence (e.g., physical and sexual assault, intimate partner

violence) is the leading cause of injury in SA, a country where

the homicide rate is seven times higher than the global average

(3). The extent and severity of trauma exposure in SA have been

found to contribute significantly to the overall burden of disease
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BMI = body mass index, CAPS-5 = Clinician-Administered
Posttraumatic Stress Disorder Scale for DSM-5, CRP = C-reactive
protein, CTQ = Childhood TraumaQuestionnaire,DSM-5 = Diag-
nostic and Statistical Manual of Mental Disorders, Fifth Edition,
IBD = inflammatory bowel disease, IBS = irritable bowel syndrome,
IgA = immunoglobulin A, IL = interleukin, IQR = interquartile
range, LEC-5 = Life Events Checklist for DSM-5, MDD = major de-
pressive disorder,OTUs=operational taxonomicunits,PTSD=post-
traumatic stress disorder,QIIME=Quantitative Insights intoMicrobial
Ecology, SA=SouthAfrica,TE= trauma-exposed,Treg= regulatory
T cell, VSURF = variable selection using random forests
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(4). Within the Diagnostic and Statistical Manual of Mental Dis-

orders, Fifth Edition (DSM-5) (5), posttraumatic stress disorder

(PTSD) is classified as a trauma- and stress-related disorder that

is characterized by the presence of symptoms in four diagnostic

clusters (intrusion, avoidance, negative alterations in cognitions

and mood, and alterations in arousal and reactivity) that signifi-

cantly impair psychosocial functioning (5). Symptoms can per-

sist for years after a traumatic event (6) and negatively affect

quality of life (7,8). The prevalence of PTSD in SA has been

found to range between 2.3% and 19.9% (9,10). In light of the

substantial health and economic burden imposed by PTSD, re-

search into the pathophysiology of the disease is imperative to

both gain new insights into factors that contribute to the disease

and develop novel strategies for prevention and treatment.

Recent research has focused on the role of exaggerated inflam-

matory responses in the pathogenesis of PTSD. To this end, a sub-

set of CD4+ Tcells, the regulatory Tcells (Tregs), have been found

to be altered in PTSD-affected individuals (11,12). Tregs play an

important role in defense against inappropriate inflammatory re-

sponses, such as those observed in autoimmunity, allergy, and

asthma (13). Reduced levels of Treg cells have been observed after

exposure of human participants to a laboratory stressor (14) and in

male and female refugees with chronic PTSD relative to healthy

controls (11,12). Furthermore, reduced frequency of Tregs is asso-

ciated with autoimmune diseases such as thyroiditis, inflammatory

bowel disease (IBD), and rheumatoid arthritis (13), conditions for

which individuals with PTSD show increased risk (15). Consistent

with these findings, genome-wide association studies in PTSD

cohorts revealed an association with ANKRD55 (16), a gene as-

sociated with several autoimmune and inflammatory disorders,

including multiple sclerosis (17,18), Type 2 diabetes mellitus

(19), celiac disease (20), and rheumatoid arthritis (21). In addi-

tion, Jergović et al. (22,23) observed an altered Treg phenotype

in male combat veterans with PTSD compared with healthy

controls. PTSD has also been found to result in up-regulation

of interleukin (IL) 6 and proinflammatory cytokines, including

interferon-γ, IL-1β, and tumor necrosis factor (24–26). Elevated

levels of C-reactive protein (CRP), a clinically used marker of

inflammation, have also been observed in individuals with

PTSD (27–29). Preexisting elevated CRP levels (30), or elevated

IL-6 measured within 24 hours after trauma (31), have been

found to predict postdeployment Clinician-Administered PTSD

Scale (CAPS) scores in war zone–deployed Marines or a diagnosis

of PTSD in children 6 months after trauma, respectively.

An important factor determining immunoregulation, indicated

by a balanced expansion of effector T-cell populations and Tregs,

is the human microbiome (32–34). The human microbiota

comprises all the microorganisms (archaea, bacteria, eukaryotes,

fungi, and viruses) harbored by the human body, and the complete

catalog of these microbial symbionts and their genes constitutes

the human microbiome (35). Research suggests that microbial

inputs are essential for maintaining homeostasis and optimum

health (36), controlling blood-brain barrier permeability (37),

and regulating central nervous system (CNS) function (38). A

complex, bidirectional system of communication exists between

the gut microbiome, the gut, and the CNS (39). Data from

animal studies indicate that environmental and gut microbial

species elicit a significant impact on cognitive function, memory,

and fundamental patterns of behavior, such as social interaction

and stress coping (40–43). In addition, stress can influence

the composition of the gut microbiota, and the bidirectional

communication between microbiota and the CNS in turn

influences stress reactivity (40,41,44). Alterations in microbiota

have been shown to modulate plasticity-related (45–47),

serotonergic (40,45,48,49), and GABAergic (50–52) signaling

systems in the CNS. Dysregulation of the gut microbiome

(dysbiosis) therefore may influence risk for developing a disease,

including stress- or trauma-related disorders (40,41,44).

Gut microbiota have also been found to play a role in program-

ming of the hypothalamic-pituitary-adrenal axis (one of the key

regulators of the stress response system) (38,53), with implications

for stress-related disorders, including PTSD. Dysregulation of the

hypothalamic-pituitary-adrenal axis may contribute to the patho-

physiology of PTSD (54). Glucocorticoid-mediated immunosup-

pression may result in the reduction of inflammatory responses

in the short term, but in the long term, it can also lead to an imbal-

ance in the homeostasis between pathobionts (resident microbes

with pathogenic potential (55,56)), gut microbiota, and the mu-

cosa. Indeed, glucocorticoids induce the expansion of pathobionts,

such as Helicobacter species, a gram-negative bacterium, shown

to enhance chronic inflammatory diseases (57). Mice exposed to

psychological stressors exhibit expansion ofHelicobacter species,

as determined by absolute abundance, evaluated using real-time

quantitative polymerase chain reaction (58), or relative abundance

(40,41), and this effect can be prevented by the administration of a

glucocorticoid receptor antagonist (58). Helicobacter species in-

duce colitis in IL-10–/– mice, which lack adequate immunoregula-

tion, an effect that may be due to overactivation of host immune

defenses (59–61). Immunization with a heat-killed preparation of

an immunoregulatory bacterium that increases Treg and anti-

inflammatory cytokines, such as IL-10 and transforming growth

factor β (62), has recently been shown to prevent stress-induced

increases in a PTSD-like syndrome in mice (40,41), suggesting

that the balance of proinflammatory and anti-inflammatory or

immunoregulatory microbial inputs could contribute to the risk

of developing a PTSD-like syndrome.

The present study investigated the gut microbiome profiles of a

relatively homogeneous group of individuals of a unique South

African mixed ancestry population.1 Individuals with a diagnosis

of PTSD were compared with individuals who were exposed to

a traumatic event but did not develop PTSD, to identify microbial

signatures associated with PTSD.

METHODS

Clinical and Metabolic Measures
All research participants provided written informed consent to take part in

the study after the study procedures were explained in detail. The Health

Research Ethics Committee 2 of Stellenbosch University approved the

study. Participants were recruited through purposive sampling using vari-

ous avenues including referrals from general and psychiatric hospitals

and community clinics from Cape Town and surrounding areas as well as

through print, radio, and Web advertisements. Samples included in this

study were collected from August 2014 to February 2015.

1In South Africa, recognized population groups include Black African,
Coloured, Indian or Asian, White, and Other. Coloured people, included in
this study, constitute the largest population group in the Western Cape (63).
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On the basis of theMINI International Neuropsychiatric Interview, ver-

sion 6.0 (64), participants were excluded if they had bipolar or psychotic

disorders or an alcohol or drug use disorder within the past 6 months. Other

exclusionary criteria included a neurological disorder, a diagnosis of meta-

bolic syndrome, diarrhea within the past week, any antibiotic use 4 weeks

before stool sampling, or a diagnosis of IBD, celiac disease, or irritable

bowel syndrome. Written informed consent was obtained from all study

participants. The study sample consisted of 18 PTSD and 12 trauma-

exposed (TE) control participants of South Africanmixed ancestrymatched

for age, sex, time since index trauma, and the number of traumatic event ex-

posures. Demographic and clinical data were collected using structured de-

mographic and medical history questionnaires designed for the SHARED

ROOTS parent study. PTSD diagnosis was based solely on CAPS for

DSM-5 (CAPS-5) severity scores, with those with a score of 23 or higher

being placed in the PTSD cohort. Current PTSD diagnosis and symptom

severity were determined using the CAPS-5 (65). The CAPS-5 is a struc-

tured diagnostic interview used to diagnose PTSD on the basis of the

DSM-5 criteria and is the criterion standard PTSD interview assessment.

Plasma CRP concentration was measured as a marker associated with

inflammation. CRP assays were used to report CRP concentrations

higher than 3.0 mg/dl; high-sensitivity CRP assays were used to report

CRP concentrations lower than or equal to 3.0 mg/dl. In 27 cases where

these values were obtained using both assays, the values were highly corre-

lated (Pearson correlation, r = 0.996; p < .001).

Adverse early life experience is an important determinant of risk for

PTSD (66,67). Consequently, we estimated adverse early life experience

using the Childhood Trauma Questionnaire (CTQ). The CTQ (68) was

used to screen for a history of child abuse and neglect. The CTQ consists

of 28 self-report items used to calculate a total childhood trauma score by

adding scores obtained on five trauma subscales (physical abuse, sexual

abuse, emotional abuse, physical neglect, and emotional neglect). Further-

more, prenatal maternal stress, compared with a low-stress control condi-

tion, has been shown to affect the infant microbiota measured at 7, 14,

28, 80, and 110 days of age in infants, suggesting important effects of ad-

verse early life experience on the gut microbiome (69).

Microbiome Analyses
Microbial DNAwas extracted from 1.4 ml of stabilized stool (stool speci-

men homogenized in stool DNA-stabilizing buffer) using the PSP Spin

Stool DNA Plus Kit (STRATEC Molecular, Birkenfeld, Germany) ac-

cording to the manufacturer's protocol 2 (“Isolation of total DNA from

1.4 ml-stabilized stool homogenate with enrichment of bacterial

DNA”). The 16S ribosomal RNA gene amplicons were generated for

the V3 and V4 regions of the 16S ribosomal RNA bacterial gene, which

were recommended by Klindworth et al. (70). Illumina adapter over-

hang nucleotide sequences were added to the gene‐specific sequences.

The full-length primer sequences targeting this region were 341 forward

primer (5′-CCTACGGGNGGCWGCAG-3′) and 785 reverse primer

(5′-GACTACHVGGGTATCTAATCC-3′).

Libraries were prepared using the 16S Metagenomic Sequencing Li-

brary Preparation Kit from Illumina, according to the manufacturer's in-

structions. Libraries were sequenced using multiplexed Illumina HiSeq

paired-end 100-base-pair sequencing according to the manufacturer's in-

structions. Base calling was performed and FASTQ sequence reads were

generated using Illumina Casava Pipeline 1.8.2. Initial quality assessment

was based on data passing the Illumina Chastity filter. Subsequently, reads

containing adaptors and/or PhiX control signal were removed. The second

quality assessment was based on the remaining reads using the FASTQC

quality control tool version 0.10.0.

Taxonomy From DNA Sequences
The operational taxonomic unit (OTU) table was prepared using Quantita-

tive Insights into Microbial Ecology (QIIME) version 1.9 (71). Forward

reads were demultiplexed using default parameters, with a minimum

quality score threshold set to 25. Following this step, 1,738,164 of

1,959,124 HiSeq reads passed quality control. These reads were assigned

to OTUs using the closed-reference OTU picking methodwith Greengenes

97% reference database (August 13) (72).

Microbial Diversity Analysis
In microbiome studies, two commonly used measures of species diversity

are α-diversity (assessing diversity within a sample) and β-diversity

(assessing differences between samples, with greaterβ-diversity indicating

greater dissimilarity). α- and β-diversities were analyzed using rarefied

data, which corrects for differential sequencing depth among samples, using

QIIME (71).

Comparison of Taxa Abundances
OTUs of the rarefied data set were collapsed by taxonomic assignment and

compared using QIIME (71). In addition, we used the R package variable

selection using random forests (VSURF) (73) for feature selection on the

37 phyla. This method uses random forests, which are an ensemble ap-

proach frommachine learning that ranks the importance of features in terms

of their ability to classify a variable of interest while taking into account the

complex interrelationships of the features (74). The VSURF function pro-

vides two sets of results: the “interpretation” subset of important variables

that may include some redundancy and the “prediction” subset that aims

to eliminate redundancy while maintaining predictive accuracy. We then

used marginal plots, partial plots, and the find.interactions function of the

R package randomForestSRC (75) to interpret the findings of the variable

selection process. In addition, to interpret the findings, we also used

Pearson correlation to evaluate the relationship between the random

forest model outcomes and CAPs scores, CTQ scores, and other vari-

ables of potential interest.

For additional details of the clinical population and detailed methods

for microbiome analysis, see Supplemental Methods (Supplemental Digital

Content 1, http://links.lww.com/PSYMED/A411).

RESULTS

Clinical and Biological Measures
A summary of key demographic and clinical data of the study

participants is found in Table 1. Median CAPS-5 total scores

were 33.5 for the PTSD group and 3.5 for the TE group

(Table 1; p < .001; ranges, 23–48 for PTSD and 0–20 for TE).

A difference in CTQ scores, with higher scores in the PTSD

group, approached statistical significance (Table 1; p = .068).

The type of traumatic event most frequently endorsed as the

index trauma by the overall group was assault with a weapon

(n = 7; 23.3%), followed by the sudden unexpected death of

someone close to them (n = 6; 20.0%), physical assault (n = 5;

16.6%), and sexual assault (n = 4; 13.3%). Assault with a

weapon (n = 4; 22.2%) and physical assault (n = 4; 22.2%)

were the index traumas most frequently identified by those

with PTSD, followed by the sudden unexpected death of

someone close to them (n = 3; 16.7%) and sexual assault

(n = 3; 16.7%); the index traumas most often experienced by

individuals in the control group were assault with a weapon

(n = 3; 25%) and the sudden unexpected death of someone

close to them (n = 3; 25%). Six (33.3%) of those with PTSD

were receiving concomitant psychotropic medications (3

[16.7%] were on amitriptyline [5–25 mg] for sleep or

neuralgia, 1 (5.6%) was on zolpidem [5 mg] for sleep, and 2

(11.1%) were on fluoxetine [20 mg] and citalopram [20 mg],

respectively, for depression). Three individuals with PTSD
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(16.7%) and one control (8.3%) were on treatment of hypertension,

and one control participant (8.3%) was receiving treatment for

hypercholesterolemia. The only variables that differed significantly

between the PTSD participants and the TE controls were mean sys-

tolic and diastolic blood pressures, with mean systolic and diastolic

blood pressures being lower in the PTSD participants (Table 1).

Gut Microbiome Analyses
Of 1,959,124 reads resulting from sequencing, a total of 1,738,164

(88.7%) passed the QC filters applied to remove low-quality reads.

Of those reads, 1,690,568 (97.3%) aligned to the Greengenes data-

base (August 13) with at least 97% similarity level. A total of 37

phyla were detected in the resulting data set. The top 2 phyla

observed in all participants were Firmicutes and Bacteroidetes,

followed by Proteobacteria and Actinobacteria, as expected.

Figure 1 shows the 10 most abundant phyla identified in the

PTSD participants and TE controls. No significant differences

in relative abundances of individual taxa in the PTSD partici-

pants and TE controls were observed (Fig. 1; Supplemental

Digital Content 1, Fig. S1, http://links.lww.com/PSYMED/

A411; Kruskal-Wallis tests with Bonferroni correction).

There were also no significant differences in α-diversity (Supple-

mental Digital Content 1, Fig. S2, http://links.lww.com/PSYMED/A411;

Chao 1 (t = 0.832, p = .41), observed species (t = 0.760, p = .45),

phylogenetic diversity (t = 0.510, p = .61), Shannon entropy

(t = 0.386, p = .70; using data rarefied at 30,000 reads), or

β-diversity (Supplemental Digital Content 1, Figs. S3 and S4,

http://links.lww.com/PSYMED/A411) between the PTSD partici-

pants and the TE controls. Specifically, analysis of similarities re-

vealed that there were no differences between the PTSD group and

the TE control group using the Bray-Curtis distance metric (test

statistic = –0.033, p = .70), weighted UniFrac distance metric (test

statistic = –0.016, p = .56), or unweighted UniFrac distance metric

(test statistic = –0.013, p = .52).

We created a biplot, projecting phylum level taxonomic infor-

mation onto a PCoA plot, to determine which taxa drive sample

distributions in PCoA space. Relative abundance of Cyanobacteria

was found to be a major determinant of differences in bacterial

community structure among samples (Fig. 2). All Cyanobacteria

belonged to order Gastranaerophilales (YS2/4C0d2), which has re-

cently been defined as an order within the class of nonphotosynthetic

Melainabacteria (76); however, Di Rienzi et al. (77) and Hug et al.

(78) propose Melainabacteria as a separate phylum. Biplot analysis

at the genus level revealed no clear condition-specific patterns

(Supplemental Digital Content 1, Fig. S5, http://links.lww.com/

PSYMED/A411).

TABLE 1. Clinical and Demographic Variables of the Study Participants

Clinical/Demographic Variable PTSD Participants (n = 18) TE Controls (n = 12) p

Age, M (SD), y 42.0 (12.6) 38.7 (11.7) .52

Female, n (%) 14 (77.8) 7 (58.3) .26

CAPS-5 total score, median (IQR) 33.5 (30.0–36.7) 3.5 (0–9.5) <.001

Time since index trauma, median (IQR), mo 126 (39–231) 48 (24–126) .18

No. different types of traumatic experiences on LEC-5, M (SD) 6.3 (1.9) 5.9 (3.9) .75

CTQ total score, median (IQR) 54 (36.5–81.5) 38 (32.0–44.0) .068

MINI current MDD, n (%) 2 (11.1) 0 (0) .50

MINI lifetime MDD, n (%) 12 (66.7) 6 (50.0) .46

MINI current comorbid anxiety disorder(s), n (%) 6 (33.3) 1 (8.3) .19

Current psychiatric medication, n (%) 6 (33.3) 0 (0) .057

Psychiatric medication current/lifetime, n (%) 7 (38.9) 3 (25.0) .43

Cigarette smoking (previous 6 mo), n (%) 9 (50.0) 5 (41.7) .87

Alcohol use (previous 6 mo), n (%) 9 (50.0) 7 (58.3) .78

Lifetime history of illicit substance use, n (%) 3 (25.0) 5 (41.7) .21

CRPa, median (IQR) 1.4 (0.6–2.8) 2.0 (1.0 – 6.2) .11

BMI, M (SD), kg/m2 28.5 (7.0) 28.6 (9.8) .96

Waist circumference, M (SD), cm 90.7 (14.4) 87.4 (16.3) .57

Systolic blood pressure, M (SD), mm Hg 120.3 (12.6) 131.5 (14.0) .035*

Diastolic blood pressure, M (SD), mm Hg 75.2 (7.47) 83.7 (9.4) .016*

Triglycerides, M (SD), mM 0.9 (0.3) 1.0 (0.3) .30

HDL cholesterol, M (SD), mM 1.5 (0.4) 1.6 (0.5) .45

Fasting glucose, median (IQR), mM 5.0 (4.7–5.3) 5.0 (4.8–5.2) >.99

PTSD = posttraumatic stress disorder; TE = trauma-exposed; M (SD) = mean (standard deviation); CAPS-5 = Clinician-Administered Posttraumatic Stress Disorder Scale for

DSM-5; IQR = interquartile range; LEC-5 = Life Events Checklist for DSM-5; CTQ = Childhood Trauma Questionnaire; MINI = MINI International Neuropsychiatric Interview,

version 6.0; MDD = major depressive disorder; CRP = C-reactive protein; BMI = body mass index; HDL = high-density lipoprotein.

Continuous data were summarized as M (SD), if approximately normally distributed, and as medians and IQRs if nonnormally distributed. Differences between normally and

nonnormally distributed data were assessed using Student's t-tests and Mann-Whitney U tests, respectively. Categorical data were summarized as counts and percentages, and

differences between groups were assessed using χ2 or Fisher exact tests, where appropriate.

*p < .05, Student's t-test.
a CRP >3.0 mg/l based on CRP assay; CRP ≤3.0 mg/l based on hsCRP assay.
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We used weighted gene coexpression network analysis to

investigate potential differences in microbial co-occurrence net-

works at the OTU level. To summarize the profiles of co-

occurrence modules, we calculated the eigenvalue, which provides

a mathematically optimal way of summarizing the co-occurrence

patterns of all OTUs belonging to each module. To identify func-

tional microbial communities or modules that were correlated with

clinical traits, we used correlation tests to relate each eigenvalue to

the clinical traits. Zhang and Horvath (79) recommend selecting a

soft thresholding power that satisfies a scale-free fit ofR2 > 0.8 and

a slope approximately equal to –1. As such, we selected β = 5

(R2 = 0.88, slope = –1.95) for construction of our adjacency ma-

trix. The weighted gene coexpression network analysis generated

22 different modules that were each arbitrarily assigned a unique

color label. The bacterial dendrogram and module assignments

are shown in Figure S6 (Supplemental Digital Content 1,

http://links.lww.com/PSYMED/A411). The most highly con-

nected nodes defined by scaled connectivity were dominated

mainly by either the Bacteroidetes phylum or the Firmicutes

phylum, with either Lentisphaerae or Proteobacteria also show-

ing the most connectivity for two modules (Supplemental Digital

Content 1, Table S1, http://links.lww.com/PSYMED/A411). Mod-

ule concept and descriptive statistics can be seen in Table S1

(Supplemental Digital Content 1, http://links.lww.com/PSYMED/

A411). The cluster coefficient is a measure of localized network

density or “cliquishness” within the modules. Network density is

a measure of the total amount of possible connections that exist

within a given module. Network centrality is a measure of how

much one individual node dominates the module's connectedness.

The p value was generated from the Student's t-test comparison

between the eigenvalues of the PTSD participants and TE controls

using Bonferroni correction. Finally, the most connected node

phylum was determined by the scaled connectivity coefficient.

Analysis of the module eigenvalues determined that there were

no differences between PTSD participants and TE controls for any

of the 22 modules identified. In addition, none of the traits of the

participants that were regressed against the modules were signifi-

cant when using Bonferroni correction.

The functional potential of microbial communities was investi-

gated using phylogenetic investigation of communities by recon-

struction of unobserved states (Supplemental Digital Content 1,

Fig. S7, http://links.lww.com/PSYMED/A411) (80). This analysis

defined 328 functional groups; of these, 293 (89%) had positive

values, whereas 35 (11%) had zero values for all samples. There

were no significant differences between the PTSD participants

and the TE controls for any functional groups using Kruskal-

Wallis one-way analysis of variance and Bonferroni correction

to test for relative increases or relative decreases. Although the

Kruskal-Wallis test does not explicitly account for compositionality,

it can be useful for probing for obvious changes inmetagenomics. A

total of 5.5% of functional groups showed a greater than 50%

relative increase in the PTSD participants compared with the

TE controls, whereas a total of 2.4% of functional groups showed

a greater than 50% relative decrease in the PTSD participants com-

pared with the TE controls. The greatest percent increase (910%)

was observed for photosynthesis—antenna proteins, which in-

clude proteins associatedwith the phycobilisome in Cyanobacteria

and red algae—and may reflect increases in Cyanobacteria of the

order Gastranaerophilales (YS2/4C0d2) in a subset of PTSD par-

ticipants. Statistical comparison of this functional group in the

PTSD participants and TE controls revealed no significant differ-

ence (t = 3.86; p = 0.050; Bonferroni-adjusted p = 1.0).

Random Forest/VSURF
We used the R packageVSURF (73) for feature selection on the 37

phyla. Random forest analysis identified three phyla (Actinobacteria,

FIGURE 1. Stacked bar chart indicating the relative abundances of the 10 most abundant phyla detected in the gut microbiomes of PTSD
participants and TE controls. PTSD = posttraumatic stress disorder; TE = trauma-exposed. Color image is available only in online version
(www.psychosomaticmedicine.org).
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Lentisphaerae, and Verrucomicrobia) as highly important to

classify PTSD versus TE controls. Of these, Lentisphaerae and

Verrucomicrobia were correlated, and the more parsimonious set

of results included only Actinobacteria and Verrucomicrobia. As

per the random forest feature selectionmethod that we used, we re-

fer to this first set of three phyla as the interpretation set of results

and the subset of Actinobacteria and Verrucomicrobia as the pre-

diction set. The Cohen d effect size for the interpretation model

[Actinobacteria, Lentisphaerae, Verrucomicrobia] was 0.894; the

Cohen d effect size for the prediction model [Actinobacteria,

Verrucomicrobia] was 0.864. Thus, both models yielded large

effect sizes in terms of the taxonomic differences between individ-

uals with PTSD and TE controls. The interpretation step of the var-

iable selection function had an error rate of 30.7%; the prediction step

had an error rate of 26.4%. The marginal plots, which show the

unadjusted relationship between the predicted probability of PTSD

and abundance of these taxa (Fig. 3), and the partial plots (Supple-

mental Digital Content 1, Fig. S8, http://links.lww.com/

PSYMED/A411), which show the adjusted relationship, were

similar. For all three phyla, the general relationship was that higher

abundance corresponded with a lower probability of PTSD.

Similarly, lower total abundance of these taxa corresponded

with higher PTSD CAPS score (Fig. 4; Pearson r = –0.387;

p = .035). There was no evidence of strong two-way interactions

among the phyla. The prediction subset of results showed similar

patterns (Supplemental Digital Content 1, Fig. S9, http://links.lww.

com/PSYMED/A411).

The relative abundance of [Actinobacteria, Verrucomicrobia]

was also associated with childhood trauma scores (CTQ, total

score), with higher CTQ scores associated with lower total relative

abundance (Supplemental Digital Content 1, Fig. S10, http://links.

lww.com/PSYMED/A411; Pearson r = –0.375; p = .041). There

FIGURE 2. Biplot illustrating phylum-level gut microbial community analysis (closed symbols) and composition analysis (vectors) using
PCA of center log ratio–transformed and standardized data from 18 PTSD participants (red symbols) and 12 TE controls (blue symbols).
The distance between symbols approximates the dissimilarity of their microbial communities, as measured by Euclidean distance. PCA
axes 1 and 2 explain 30.4% and 20.6% of the variation, respectively. Vectors point in the direction of the greatest increase of values for
the corresponding phylum across all PTSD and TE control participants; 37 different phyla were detected. The angle between arrows
indicates approximated correlation (>90° indicates a negative correlation). Gray text indicates participant identification number and
plasma CRP concentrations for individual participants as measured using HS-CRP (CRP ≤3.0 mg/l) or S-CRP (CRP >3.0 mg/l) assays.
Relative percent abundances of Cyanobacteria for individual PTSD participants were as follows: SR186, 2.87%; SR149, 2.78%;
SR212, 2.14%; SR145, 1.67%; SR132, 1.23%; SR156, 0.23%; SR174, 0.06%; SR176, 0.01%; SR211, 0.01%; SR210, 0.0036%; and
SR135, 0.0035%. Relative percent abundances of Cyanobacteria for individual TE control participants were as follows: SR105, 4.65%;
SR160, 0.11%; SR207, 0.027%; SR138, 0.014%; SR215, 0.0034%; and SR214, 0.0037%. Cyanobacteria were undetectable in all
other participants in the filtered data set. Operational taxonomic units associated with the orders Haptophyceae, Streptophyta,
Gloebacterales, Pseudanabaenales, and Synechococcales belonging to the Cyanobacterium phylum were observed in fewer than 20%
of participants. PCA = principal component analysis; PTSD = posttraumatic stress disorder; TE = trauma-exposed; CRP =C-reactive protein;
HS-CRP, high-sensitive CRP; S-CRP = sensitive CRP. Color image is available only in online version (www.psychosomaticmedicine.org).
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was, however, no difference in CTQ scores in PTSD participants

versus controls (Table 1; p = .068).

DISCUSSION
The present exploratory study evaluated microbial diversity and

community structure in 18 PTSD participants and 12 TE controls.

We found no significant differences in microbial community

diversity or predicted functional capacity between the PTSD

participants and the TE controls. However, random forest anal-

ysis highlighted three phyla, Actinobacteria, Lentisphaerae, and

Verrucomicrobia, as important to distinguish PTSD participants

relative to TE controls. Decreased total abundance of these

phyla was associated with higher PTSD CAPS scores. These re-

sults are interesting in part because they are consistent with pre-

dictions on the basis of theoretical grounds related to the

hygiene hypothesis or the “old friends” hypothesis (32,80–89)

and studies using an animal model of PTSD (40,41), leading

to the hypothesis that decreased exposure to Actinobacteria and

other anti-inflammatory/immunoregulatory “old friends” leads to

increased vulnerability to PTSD (40). In this exploratory clinical

FIGURE 3. Marginal plots of the random forests predicted values for the estimated probability of PTSD from the random forests versus
the relative abundance of the three phyla identified as important for distinguishing PTSD status. PTSD = posttraumatic stress disorder.
Color image is available only in online version (www.psychosomaticmedicine.org).

FIGURE 4. Relationship between the random forests interpretation model, relative abundance of [Actinobacteria, Lentisphaerae,
Verrucomicrobia] and PTSD scores (CAPS total score). PTSD was negatively correlated with the relative abundance of Actinobacteria,
Lentisphaerae, and Verrucomicrobia phyla. In other words, PTSD diagnosis was associated with a decreased abundance of these phyla
(Pearson r = –0.387; p = .035). Percentages in parentheses indicate the percent relative abundance of Akkermansia; Akkermansia was
below the threshold of detection for all other participants. Sample sizes: PTSD participants, n = 18; TE controls, n = 12. *p < .05,
Student's t-test. PTSD = posttraumatic stress disorder; CAPS = Clinician-Administered Posttraumatic Stress Disorder Scale for DSM-5;
TE = trauma-exposed. Color image is available only in online version (www.psychosomaticmedicine.org).
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study, the machine learning analysis is consistent with this

hypothesis, with decreases in relative abundance of Actinobacteria,

Lentisphaerae, and Verrucomicrobia in those with PTSD.

The Verrucomicrobia phylum was strongly represented by a

single genus, Akkermansia, of which there is one species,

muciniphila (on average, in participants with Verrucomicrobia,

61.9% of Verrucomicrobia belonged to the genus Akkermansia).

A. muciniphila is thought to be potently anti-inflammatory in

humans and induces Treg cells (90). A. muciniphila has been

reported to be reduced in a number of diseases or conditions as-

sociated with a failure of immunoregulation and/or increased

inflammation, including Type 1 and Type 2 diabetes, obesity, in-

flammation and metabolic disorders during obesity, IBD, appen-

dicitis, atopic diseases, autism, and aging (for references, see

Ref. (91)). The Actinobacteria phylum was strongly repre-

sented by the Collinsella genus (Collinsella represented 54.2% of

Actinobacteria, expressed as mean percent of Actinobacteria among

those participants with detectable Actinobacteria). Decreased rela-

tive abundance of Actinobacteria also has been described in individ-

uals with major depressive disorder (92), whereas a recent study

demonstrates a negative association between relative abundance

of Actinobacteria and stress-induced increases in gut permeability

(93). Conversely, a recent analysis of semi-supercentenarians

(105–109 years of age), in comparison to adults, elderly individ-

uals, and centenarians, found a higher prevalence of Akkermansia

(Verrucomicrobia) as well asEggerthella andBifidobacterium (prom-

inent genera of gut commensals belonging to the Actinobacterium

phylum) in semi-supercentenarians (94). These data identify a clear

hypothetical framework that can be investigated in future studies. It

will be important to both replicate these findings in such studies and

to investigate the effects of the Actinobacteria, Lentisphaerae, and

Verrucomicrobia phyla more in-depth.

These data are consistent with a previous clinical study of

maternal prenatal stress, in which the relative abundances of

Actinobacteria (including a consortium of Actinomycetaceae,

Bifidobacterium, Collinsella, and Eggerthella) were low in in-

fants whose mothers had experienced high cumulative stress,

and the relative abundance of Akkermansia declined dramati-

cally in the group with high cumulative stress after the first

month and remained low thereafter (69). It's possible that in

the present study, maternal prenatal stress or adverse early life

experience induced alterations in the relative abundances of

Actinobacteria, Lentisphaerae, and Verrucomicrobia that persisted

until the time of adult trauma and, subsequently, led to the devel-

opment and persistence of PTSD symptoms. Alternative explana-

tions for these findings include current use of psychiatric

medications by 6 (33.3%) of the 18 PTSD participants, and the

possibility that altered autonomic nervous system function (ex-

pected in some individuals with a history of early adversity (95)

may result in an altered environment for the gut microbes (96).

It is possible that elevated inflammation at the time of trauma

exposure is critical for determining PTSD outcomes (30,31). In

support of the hypothesis that elevated inflammation before or im-

mediately after trauma is an important factor in determining the de-

velopment of PTSD symptoms after trauma exposure, preexisting

elevated CRP levels (30) or elevated IL-6 measured within

24 hours after trauma (31) has been found to predict subsequent

PTSD symptoms. Studies in rodents are consistent with this hy-

pothesis because individual differences in stimulated IL-6 release

before psychosocial stress predict subsequent vulnerability to

anxiety and depression-like behavioral responses (97), and im-

munizations with an immunoregulatory bacterium that prevent

stress-induced exaggeration of IL-6 release prevent the develop-

ment of a PTSD-like syndrome (40,41).

Individual differences in the host immune response may play

an important role in vulnerability to PTSD symptoms after trauma

exposure. Consistent with this hypothesis, studies in rats show that

glucocorticoids decrease IgA (which normally inhibits bacterial

adherence to intestinal epithelial cells), increase bacterial ad-

herence over two-fold, and increase bacterial translocation to

mesenteric lymph nodes (98). Decreased immunoregulation,

as evidenced by decreased frequency of Treg cells, or altered

Treg function, may lead to overactive host immune defenses, in-

creased gut permeability, colitis, and exaggerated PTSD symptoms

after trauma exposure (11,12,14,22,23). On the basis of the current

study, decreases in the relative abundances of Actinobacteria,

Lentisphaerae, andVerrucomicrobia (including the prevalent human

commensal,A. muciniphila) may contribute to decreased immuno-

regulation in PTSD.

Limitations
There are a number of important limitations of this study that de-

serve mention. The PTSD and TE control participants were com-

parable with regard to a number of clinical end points, including

age, sex, time since index trauma, number of different types of

traumatic experiences, current and lifetime depressive symptoms

and comorbid anxiety disorders, smoking and alcohol use in the

previous 6 months, lifetime history of illicit substance abuse, and

symptoms of metabolic syndrome. That being said, some mem-

bers of the TE group reported subthreshold symptoms of PTSD,

as well as clinically significant symptoms associated with other

current psychiatric conditions. There were no differences in plasma

CRP concentrations between the PTSD and TE control participants.

Although elevated plasma concentrations of CRP, a biomarker of in-

flammation, have been observed in individuals with PTSD (27–29),

symptoms not specifically evaluated with respect to CRP concen-

trations in the present study, such as reexperiencing symptoms,

may account for this association (27). Previous studies have found

that 23.0% of individuals in a community sample have elevated

CRP (>3 mg/l) (28); a similar percentage of the participants in

the present study was found to have elevated plasma CRP concen-

trations (8/30 participants overall [26.7%], 4/18 PTSD participants

[22.2%], and 4/12 TE controls [33.3%]). In contrast to previous

studies with larger sample sizes, we were not able to detect in-

creases in plasma CRP concentrations in the PTSD participants,

although previous studies did not use TE controls as a comparison

group (28,29). Indeed, trauma exposure per se might be a factor

that contributed to elevated plasma CRP concentrations in individ-

uals with PTSD in previous studies, because trauma exposure is

associated with elevated CRP on the basis of a transdiagnostic

meta-analysis (99).

There are a number of other limitations of the current work.

First, the study was of a cross-sectional nature. A longitudinal de-

sign will be required to determine the potential for causal effects of

certain microbial profiles. Second, the sample sizes in this explor-

atory study were relatively small; consequently, the power of the

study was not optimal. To guide the design of future studies, we es-

timated power by Monte Carlo simulation as implemented in the
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HMP package in R, using the Dirichlet-multinomial parameters

estimated from the data from this study.We performed 20,000 iter-

ations for a range of read depths (10–100 thousands in increments

of 10 thousands) and sample sizes (15–60 in increments of 15).

Using these parameters, future studies would have greater than

98% power to detect a difference between groups with 60 samples

per group and using a Bonferroni correction for 20 comparisons

(α = .0025; four clinical functional outcomes and five biological sig-

natures). Third, some in the TE group exhibited posttraumatic symp-

toms and/or met the criteria for other psychiatric conditions (e.g.,

major depressive disorder). Fourth, index traumas differed between

study participants, and there was also awide range of time since index

trauma. Fifth, an additional potential limitation is that the CAPS-5 is a

relatively newmeasure and guidance regarding criteria for case ascer-

tainment or symptom severity cut points is notwidely available. Sixth,

inclusion of functional metabolomics would inform potential mecha-

nisms involved in any differences in microbial community structure

or diversity. Lastly, future studies should include non–TE controls,

in addition to TE controls, to explore the relationships among

trauma exposure, the microbiota, and PTSD symptoms.

CONCLUSIONS
In this report, we tested the hypothesis of an association between

the gut microbiome and PTSD. In our exploratory study, we were

unable to detect differences in microbial community structure, or

α- or β-diversity measures; however, random forest analysis iden-

tified a biological signature of vulnerability to developing PTSD,

specifically decreases in relative abundance of a consortium of

three phyla with notable immunoregulation-promoting capabili-

ties, including Actinobacteria, previously associated with lower

stress-induced increases in gut permeability in humans. These

phyla are biologically plausible in terms of their effects on PTSD,

and they could form the a priori hypotheses for larger longitudinal

studies, in which we could further evaluate both the combined and

individual associations between these phyla and PTSD. Future

studies addressing the limitations of this exploratory study will

be required to validate these findings.
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