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Abstract

Uric acid, once viewed as an inert metabolic end-product of purine metabolism, has been recently 

incriminated in a number of chronic disease states, including hypertension, metabolic syndrome, 

diabetes, non-alcoholic fatty liver disease, and chronic kidney disease. Several experimental and 

clinical studies support a role for uric acid as a contributory causal factor in these conditions. Here 

we discuss some of the major mechanisms linking uric acid to metabolic and cardiovascular 

diseases. At this time the key to understanding the importance of uric acid in these diseases will be 

the conduct of large clinical trials in which the effect of lowering uric acid on hard clinical 

outcomes is assessed. Elevated uric acid may turn out to be one of the more important remediable 

risk factors for metabolic and cardiovascular diseases.
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1. Uric acid and metabolic syndrome

While the condition known as metabolic syndrome has been suggested to be a 

pathophysiological condition, studies in comparative physiology show that the syndrome, as 

well as many of its associated factors, is a simple consequence of excessive fat storage [1]. 

Indeed, most mammals and birds will store their excess fat not only in their adipose tissue, 

but also in their liver and serum (triglycerides), often in association with the development of 

insulin resistance and elevated blood pressure [1]. While the underlying mechanisms 

involved in fat storage involve multiple genetic and other factors, recent studies suggest a 

role for nucleic acid metabolism, in which stimulation of adenosine monophosphate (AMP) 

deaminase promotes fat storage and insulin resistance, whereas activation of AMP activated 

protein kinase stimulates fat degradation and decreases gluconeogenesis [2–4]. A key factor 

that appears to promote fat storage is the AMP deaminase product, uric acid [2,3,5,6]. Here 

we will briefly discuss the studies incriminating uric acid in these conditions.

2. Uric acid and hypertension

One of the earliest associations of hyperuricemia was with hypertension [7–9]. 

Asymptomatic hyperuricemia is both associated with [10,11], and predicts, the development 

of hypertension [11]. Studies in laboratory animals have been complicated by the fact that 

most mammals express uricase, which is an enzyme that breaks down uric acid. As a 

consequence, most mammals have uric acid levels of 1–3 mg/dl, whereas the great and lesser 

apes, and humans, have uric acid levels of 3 mg/dl or greater [12]. When rats are given a 

uricase inhibitor (oxonic acid), they develop mild hypertension [13]. Genetically raising uric 

acid by knocking down the enteric urate transporter (SLC2A9) also results in elevation in 

uric acid that responds to lowering of uric acid with allopurinol [14]. Animal models of 

metabolic syndrome also have mild hyperuricemia despite the presence of uricase, and 

lowering uric acid in these animals also lowers blood pressure [15,16]. Interestingly, studies 

suggest that over time elevated serum uric acid induces microvascular and inflammatory 

changes in the kidney; the latter results in enhanced sensitivity to the effects of salt. 

Enhanced salt sensitivity leads to salt-sensitive hypertension that occurs irrespective of 

serum uric acid levels [17]. This suggests that hyperuricemia is more likely playing a role in 

initiating hypertension, but over time microvascular alterations in the kidney maintain the 

hypertensive state.

Pilot studies also suggest that lowering uric acid may improve blood pressure, including in 

pre-hypertensive obese [18] and hypertensive adolescents [19], hypertensive children on an 

angiotensin converting enzyme inhibitor [20], and in adults with asymptomatic 

hyperuricemia [21,22], in older hypertensive adults [23,24], in subjects with gout [25], in 

obese prehypertensive adults [26], in some subjects with chronic kidney disease [27], and in 

hemodialysis patients [28]. However, not all studies have reported a lowering of blood 

pressure, especially in subjects with chronic kidney disease [29]. Nevertheless, the studies 

support the hypothesis that uric acid may be a remediable risk factor in subjects with 

hypertension.
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Experimental studies suggest that uric acid may raise blood pressure through several 

mechanisms, including impairing endothelial function [30–36], stimulating endothelin 

[37,38] and activating both the renal and intracellular renin angiotensin system [36,39,40] 

(Fig. 1). One of the more important pathogenic mechanisms by which uric acid raises blood 

pressure appears to be by stimulating intracellular oxidative stress by activation of NADPH 

oxidases both in the cytosol and mitochondria [5,40–43]. Indeed, blocking oxidative stress 

or improving endothelial function can lower blood pressure in hyperuricemic rats [35,44]. In 

addition, uric acid stimulates vascular smooth muscle cell proliferation and induces 

inflammatory changes in the kidney that may help perpetuate the hypertension [39,45,46].

3. Uric acid and diabetes

Hyperuricemia has been linked with diabetes since the 1800s [47] and was associated with 

metabolic syndrome by the early 1920s [48]. Today there is overwhelming epidemiological 

evidence that shows that hyperuricemia is both present and predicts the development of 

insulin resistance and type 2 diabetes (reviewed in [49]). Historically, hyperuricemia was 

attributed as a secondary consequence to insulin resistance [50], but more recent studies 

suggest it may have a contributory causal role [49], especially since an elevated serum uric 

acid often precedes the development of insulin resistance [51]. A study of 5012 young adults 

found that baseline elevated serum uric acid predicted the onset of both diabetes (HR 1.87, 

CI 1.33–2.62) and insulin resistance (HR 1.36, CI 1.23–1.51). The elevation in baseline 

serum uric acid was not associated with plasma insulin concentration suggesting that serum 

uric acid is in fact an independent risk factor in the development of insulin resistance and 

subsequent diabetes [51]. Indeed, insulin resistance in models of metabolic syndrome can be 

improved by lowering serum uric acid [15,16], and uric acid has been shown to block AMP-

activated protein kinase and to stimulate gluconeogenesis [3]. Uric acid also blocks insulin 

mediated endothelial nitric oxide release [43] that is critical for insulin action [52]. 

Furthermore, uric acid induces oxidative stress in adipocytes, leading to lower adiponectin 

synthesis [41]. Reducing uric acid can improve circulating adiponectin levels and insulin 

resistance in mice with metabolic syndrome [16]. Furthermore, uric acid has also been 

shown to induce oxidative stress in islet cells, and upregulation of urate transporters have 

been identified in islets of rats with sugar-induced diabetes [53]. Scott, et al. [54] also 

reported that serum insulin was decreased by 26% in rats in which uricase was inhibited 

after 4weeks in association with an increase in serum glucose by 24–38%. Finally, 

pancreatic islet cells from neonatal rats incubated with uric acid but not oxonate (the uricase 

inhibitor) reduced insulin secretion by 65%. Removing the uric acid from the medium 

rapidly restored insulin secretion suggesting uric acid could have a cytostatic or cytotoxic 

effect on β-cells in the pancreas.

The effect of lowering uric acid on insulin resistance in human studies is limited. However, 

insulin resistance (HOMA index) has been reported to be improved by benzbromarone [55] 

and allopurinol [56] in two small randomized trials. In addition, one study reported an 

improvement in hemoglobin A1C levels in normotensive diabetic subjects treated with 

allopurinol [57].
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While the evidence that uric acid may have a causal role in type 2 diabetes is mounting, the 

primary argument against this relationship has been the use of Mendelian randomization 

studies in which genetic polymorphisms that predict an increase in uric acid can be used to 

predict the risk for gout but not diabetes [58,59] Again, the limitation of these studies is that 

they are evaluating serum (extracellular) uric acid as a risk factor when the metabolic 

mechanisms are mediated by intracellular uric acid, and by the fact that the polymorphisms 

involve urate transport and explain only 4–6% of the overall variance of serum uric acid 

levels [60].

4. Uric acid and fat storage (adipose and liver)

An elevated serum uric acid is also a potent predictor for the development of obesity [61] 

and fatty liver [62–67]. Experimentally uric acid has been shown to increase triglyceride 

accumulation in cultured liver cells [5,6] and hyperuricemia also increases triglyceride levels 

in the liver of rats [68]. The mechanism has been shown to be mediated by intracellular and 

mitochondrial oxidative stress [5,69]. The oxidative stress is associated with inhibition of 

aconitase in the Krebs cycle that leads to citrate accumulation and the stimulation of ATP 

citrate lyase resulting in increased fat synthesis, as well as an inhibition of enoyl CoA 

hydratase resulting in impaired beta fatty acid oxidation that is also potentiated by the 

inhibition of AMPK-activated protein kinase [2,5,70]. Lowering uric acid has been shown to 

reduce liver fat in several animal models of metabolic syndrome and also in alcohol-induced 

fatty liver [5,70,71]. To date we are unaware of any clinical trials to determine if lowering 

uric acid can reduce adiposity or hepatic steatosis in humans. However, one clinical trial 

found that allopurinol use resulted in less weight gain in adolescents compared to placebo 

treated controls [18]. More recently, another study reported that allopurinol treatment 

resulted in weight loss in obese, prehypertensive adults that was independent of energy 

intake [26].

5. Role of diet in uric acid mediated effects

Uric acid can be increased in the circulation by high purine foods (such as beer) and by 

fructose. Classically the focus has been on high purine foods as risk factors for gout [72], of 

which most purine-rich foods fall in the umami-class of foods that are increasingly 

recognized as risk factors for metabolic syndrome [73]. High fat diets can also increase 

serum uric acid [74]. In western cultures, a major dietary source for increasing uric acid is 

fructose present in added sugars [75]. Indeed, there is remarkable evidence that sugary 

beverages play a major role in the epidemic of obesity and metabolic syndrome [76–78] and 

experimental studies show that it is likely the fructose component which is primarily 

responsible for uric acid elevation and subsequent development of metabolic syndrome[79–

81] (Fig. 2). Experimental studies also suggest that a primary mechanism by which fructose 

induces metabolic syndrome is through its ability to increase intracellular uric acid 

[5,15,68,70,82]. Clinical studies also show that fructose can raise serum uric acid and induce 

features of metabolic syndrome [83–88]. In one study, high doses of fructose (200 g/day) 

were given to healthy adult males for two weeks with or without allopurinol [89]. In this 

study many of the features of metabolic syndrome were induced rapidly despite the short 

duration of the study. However, lowering uric acid was associated with prevention of the rise 
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in blood pressure but no improvement in insulin resistance. Whether this is because of the 

high doses of fructose given, or whether this suggests the beneficial effects of lowering uric 

acid is unknown [89].

6. Uric acid and thrifty genes

Most mammals have low serum uric acid (1–2 mg/dl) due to the presence of uricase, an 

enzyme that degrades uric acid [90]. However, uricase activity was progressively attenuated 

(25 to 15 million years ago) and then silenced about 15 million years ago in apes and 

prehominids [91]. There is increasing evidence that the mutation may have provided survival 

advantages to the ancestral apes at the time, by increasing their ability to store fat in 

response to a decrease in food (fruit) availability that resulted from global cooling [92,93]. 

Indeed, studies of the resurrected ancestral uricase gene suggested that it was able to blunt 

the effect of uric acid to increase fat in response to fructose and to stimulate gluconeogenesis 

[3,91]. Other potential benefits of uric acid may include its ability to block oxidative stress 

(extracellularly) [94] and to stimulate foraging behavior [95].

Studies of modern apes and humans living on native diets suggest that the mutation of 

uricase only resulted in an increase of serum uric acid to the 3 to 4 mg/dl range [12]. 

However, with the introduction of western diet, serum uric acid has increased progressively 

over the last century [12]. The rise in western diet, coupled with the loss of uricase may 

account for why there is a world epidemic of obesity, diabetes and cardiovascular disease. 

Interestingly, Pacific Islanders have higher uric acid levels that appear to be genetic and 

which preceded the introduction of western diets [96]. We have postulated that the higher 

uric acid levels in this population may explain their higher frequency of obesity and diabetes 

compared to other peoples throughout the world [97].

7. Cardiovascular disease

Uric acid has been associated with cardiovascular disease for decades [98]. For a long 

period, uric acid was thought to be purely secondary to obesity and hypertension, and was 

not considered a true cardiovascular risk factor [99,100]. A major problem with these early 

studies is that the assumption was that the relationship of uric acid with cardiovascular 

disease had to be direct, and the possibility that it increased cardiovascular disease as a 

consequence of causing hypertension, insulin resistance or kidney disease was not 

considered [101,102] (Fig. 3). The reawakening that uric acid might have a role in heart 

disease is now a hot topic, and can be best assessed by clinical trials. Early trials suggest 

benefits of lowering uric acid on carotid intimal thickness [23], angina [103], left ventricular 

hypertrophy [104], arterial stiffness [105] and cardiovascular events in subjects with and 

without chronic kidney disease [29,105–108].

8. Arguments against uric acid as a cardiovascular or metabolic risk factor

There are several arguments that suggest that uric acid may not be a true risk factor for 

metabolic or cardiovascular disease. First is the observation that acutely raising uric acid in 

the blood by infusing uric acid improves endothelial function [94,109]. The improvement in 

endothelial function is thought to be due to the ability of uric acid to function as an 
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antioxidant [94]. However, uric acid is expected to be an antioxidant in the extracellular 

environment. However, numerous studies have shown that uric acid is a pro-oxidant in the 

intracellular environment [5,40–42,53,69]. Moreover, while uric acid inactivates 

peroxynitrite, it generates two urate-based radicals in the process [110,111], so the ffects of 

uric acid as an antioxidant are not without some radical generation.

Uric acid has also been proposed to be one reason that chlorthalidone was beneficial in the 

ALLHAT (Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial) 

study possibly due to its antioxidant properties [112]. However, this is unlikely, as in our 

experimental models thiazides lower blood pressure in metabolic syndrome, but the addition 

of allopurinol completely corrects the hypertension while at the same time improving 

endothelial function [113].

Some have also argued that the benefit of allopurinol on blood pressure may be via its 

effects to block oxidants generated during the reaction of xanthine with xanthine oxidase 

[114]; however, this fails to explain why probenecid (a uricosuric) lowered blood pressure in 

the trial by Soletsky et al [18]. In addition, the effect of xanthine oxidase inhibition to block 

fat accumulation in hepatocytes in response to fructose can be prevented by adding back uric 

acid to the culture media [5]. Finally some genetic studies have failed to link polymorphisms 

that raise uric acid with hypertension [26–28] whereas others have shown such a link 

[115,116]. However, the genetic studies have relied highly on polymorphisms in genes that 

alter urate transport, and hence may alter the normal relationship of serum with intracellular 

urate levels [60]. The complexity associated with assessing polymorphisms of urate 

transporters is best observed by noting that knocking down SLC2A9 in the liver results in 

hyperuricemia without hypertension, whereas blocking the same gene in the intestine results 

in hyperuricemia with hypertension that can be treated by lowering uric acid levels [14,117].

9. Summary

We have entered a new exciting period in the history of uric acid. While uric acid was once 

the lonely dinner conversation for those suffering from gout or kidney stones, it is now being 

evaluated as a potential master conductor in the worldwide symphony of obesity, diabetes, 

and cardiorenal disease. However, at this time, it is still premature to lower uric acid as a 

means for reducing metabolic and cardiovascular disease. Rather, it is time to recommend 

definitive, large-scale clinical trials to determine whether lowering uric acid can be 

beneficial in the prevention and treatment of hypertension, insulin resistance, obesity, fatty 

liver, and cardiovascular disease.
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Fig. 1. 
Uric acid induced effects that may play a role in the pathogenesis of hypertension, diabetes, 

and obesity.
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Fig. 2. 
Relationship between high-fructose diet, generation of hyperuricemia and resulting 

metabolic syndrome. Renal disease is linked to both metabolic syndrome and hyperuricemia 

in a mutual way.
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Fig. 3. 
Schematic diagram showing complex interaction of uric acid, components of metabolic 

syndrome and cardiovascular disease. Note that elevated uric acid can lead to development 

of individual components and these components in turn can lead to elevations in serum uric 

acid. Elevated serum and intracellular uric acid may lead to increased incidence of 

cardiovascular disease both directly through inflammation, oxidative stress and endothelial 

dysfunction and indirectly through developing other established cardiovascular risk factors 

such as hypertension, diabetes and visceral obesity.
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