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Suppression of Insulin Secretion in the Treatment
of Obesity: A Systematic Review and Meta-Analysis

Zhengxiang Huang "= %, Weihao Wang">3*, Lili Huang', Lixin Guo

Objective: This proof-of-concept study aimed to evaluate the efficacy
and safety of suppression of insulin secretion in the treatment of obesity.
Methods: A search of PubMed, Embase, and Cochrane databases was
performed to identify randomized controlled trials (up to January 1, 2020)
that used drugs that directly suppress insulin secretion (diazoxide or oc-
treotide) in the treatment of obesity. The extracted data were analyzed
using random-effects meta-analysis.

Results: A total of seven randomized controlled trials were included, with
four using diazoxide and three using octreotide to suppress insulin secre-
tion. Suppression of insulin secretion significantly reduced fasting insulin
level (mean difference: —3.94 mIU/L; 95% CI: —7.40 to —0.47) but slightly
increased fasting blood glucose level (mean difference: 0.48 mmol/L;
95% CI: 0.24 to 0.72). Following the suppression of insulin secretion, sig-
nificant reductions in body weight (mean difference: -3.19 kg; 95% ClI:
-5.71 to —0.66), BMI (mean difference: —1.65 kg/m?; 95% Cl: —2.41 to
—-0.90), and fat mass (mean difference: -5.92 kg; 95% CI: —8.28 to —3.56)
were observed compared with placebo in the pooled data. No significant
difference in fat-free mass was observed (mean difference: 0.56 kg; 95%
Cl: -0.40 to 1.52).

Conclusions: Results suggest that suppression of insulin secretion may
lead to reduced body weight and fat mass with slightly increased blood
glucose in individuals with obesity.

Obesity (2020) 28, 2098-2106.

Introduction

The prevalence of obesity is increasing worldwide, causing a substantial health burden.
Obesity is associated with a variety of diseases, including type 2 diabetes, cardiovascular
diseases, and cancers. Individuals with obesity usually present with increased insulin se-
cretion, or hyperinsulinemia, compared with lean individuals. The formation of hyperinsu-
linemia could be primary, as per the carbohydrate-insulin model (1), or secondary, because
of hyperplasia and hypertrophy of pancreatic beta cells compensating for obesity-induced
insulin resistance (2). On the contrary, chronic hyperinsulinemia may cause further insulin
resistance by desensitizing insulin receptor signaling (3), increasing ectopic fat accumula-
tion in muscle and liver (4), and increasing adipose tissue inflammation (5), thus forming
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a vicious cycle. A diet with low glycemic index (6) or low carbohydrate
content (ketogenic diet) (7) in rodents is sufficient to lower insulin se-
cretion with a concomitant reduction in fat accumulation. In addition,
a 2012 study showed that high-fat diet—fed mice were prevented from
gaining fat with reduced insulin gene dosage (8), suggesting a causal
role of hyperinsulinemia in the development of obesity (9). These re-
sults indicate that suppression of insulin secretion may become a prom-
ising target in the treatment of obesity.

Currently, two types of drugs are used to suppress insulin secretion
in the clinic: the ATP-sensitive potassium channel (Karp channel)
opener diazoxide and the synthetic somatostatin analogue octreotide.
Both drugs cause cell membrane hyperpolarization, leading to
reduced action potential firing and reduced exocytosis in pancreatic
beta cells, but through different intracellular mechanisms. Diazoxide
opens Karp channels and promotes potassium efflux (10), whereas
octreotide acts on somatostatin receptors (SSTRs) and leads to
reduced cyclic AMP levels and Ca?* influx (11). Because both Karp
channels and SSTRs are highly expressed in human pancreatic beta
cells, and the beta-cell mass expands in individuals with obesity, both
drugs are able to suppress insulin secretion significantly in individ-
uals with obesity.

Preclinical studies show significant insulin suppression and weight-
lowering effects of both diazoxide and octreotide in obese animal mod-
els. Diazoxide reduced body weight in Zucker fatty rats (12-19), Otsuka
Long—Evans Tokushima fatty rats (20,21), and diet-induced obese mice
(22). Similarly, octreotide reduced body weight in high-fat-induced
obese rats (23-26) and mice (27) in a short term of 8 to 10 days of
treatment. Clinical trials using these two drugs in individuals with obe-
sity were also conducted but showed mixed results (28-34). To clarify
the effect of insulin secretion suppression in obesity, we conducted a
meta-analysis of randomized controlled trials evaluating the efficacy
and safety of insulin secretion suppression in patients with obesity.

Methods

Data sources

This meta-analysis was performed based on the Cochrane Handbook
for Systematic Reviews of Interventions and Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) (35). Three
databases, namely PubMed, Embase, and the Cochrane library, were
scanned for randomized controlled trials without time and race restric-
tion. PubMed was searched according to the following MeSH terms:

“obesity,” “randomized controlled trial,” “diazoxide,” or “octreotide.”

Eligibility criteria and data extraction

Clinical trials were included if they satisfied the following criteria: 1)
treatment duration for at least 8 weeks; 2) assessment of body weight,
insulin levels, or indicators of glucose/lipid metabolism in individuals
with obesity/overweight (BMI>24 kg/m?); 3) randomized controlled
design. Studies were excluded under the following conditions: reviews
and meta-analyses, case reports, intervention time less than 8 weeks,
and trials with inadequate information.

The following data were extracted from every included trial by two
independent researchers (WW and ZH): research characteristics
(author, publication year, duration of treatment, sample size), baseline
information of included individuals (i.e., age, sex, body weight, BMI),
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and baseline-subtracted change in clinical end points (body weight,
BMI, fat mass, fasting glucose and insulin levels).

Assessment of bias

We assessed the level of bias within included articles using the
Cochrane Collaboration tool. The following factors were assessed:
random sequence generation (selection bias), allocation concealment
(selection bias), blinding of participants and personnel (performance
bias), blinding of outcome assessment (detection bias), incomplete
outcome data (attrition bias), selective reporting (reporting bias), and
other “miscellaneous” biases. Two independent investigators (WW
and ZH) each evaluated the level of bias for these factors for all in-
cluded articles.

Statistical analysis

Body weight, BMI, fat mass, and fat-free mass were evaluated to as-
sess the efficacy of insulin suppression in the treatment of obesity,
whereas fasting blood glucose and peak blood glucose during oral
glucose tolerance tests were chosen to evaluate the safety of insu-
lin suppression on glucose metabolism. Statistical analysis was per-
formed by Review Manager software version 5.3 (Cochrane, London,
UK). Odds ratios and 95% CI were selected to assess dichotomous
outcomes. We also calculated the mean differences (MD) and 95%
CI to assess continuous outcomes. A value of P<0.05 was consid-
ered statistically significant. The random-effect model was selected
to generate forest plots. The I? test was used to assess the levels of
heterogeneity. Results were considered as having a high level of het-
erogeneity when 12>50%. Then sensitivity analysis investigated the
source of heterogeneity.

Results

Selection process and characteristics of included
trials

A total of 297 studies were identified by two independent investigators,
consisting of 166 studies from Embase, 85 studies from Cochrane li-
brary, and 46 studies from PubMed. Of these articles, 18 were removed
because of duplication, and 265 records—including 17 reviews and
meta-analyses, 6 animal research, 35 nonrandomized controlled trials,
and 207 unrelated research—were excluded by screening the abstracts.
A full-text screen was further performed for those studies (a total of
14 articles) that were not excluded through abstract screening. Among
the 14 articles, 7 fulfilled the inclusion criteria for meta-analysis. The
selection process is shown in Figure 1. The baseline information was
collected (Table 1), including study characteristics and patients’ base-
line information.

Efficacy of insulin secretion suppression

In order to evaluate the efficacy of insulin secretion suppression on
obesity, we selected the parameters that could best reflect obesity
phenotype: body weight, BMI, fat mass, and fat-free mass. We also
selected fasting insulin levels to confirm the pharmaceutical prop-
erty of the drugs on insulin suppression. The results showed a sig-
nificant reduction in fasting insulin levels (MD=-3.94 mIU/L; 95%
CI: =7.40 to —0.47; 1>=37%; P=0.03) (Figure 2A). This confirms the
efficacy of the drug on the suppression of insulin secretion. In the con-
text of obesity phenotype, we found a significant reduction of body
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Figure 1 Review flow diagram. RCT, randomized controlled trial.

weight (MD=-3.19 kg; 95% CI: -5.71 to —0.66; 12=73%; P=0.02)
(Figure 2B), BMI (MD=-1.65 kg/m2; 95% CI. -2.41 to -0.90;
1?=40%; P<0.0001) (Figure 2C), and fat mass (MD=-5.92 kg; 95%
CI: -8.28 to —3.56) (Figure 2D) in the intervention group compared
with the placebo group. There were no significant differences in fat-
free mass (MD=0.56 kg; 95% CI: —0.40 to 1.52]; I’=0; P=0.26)
(Figure 2E) between the two groups. Please note that the greater fat
mass loss than body weight loss was not relevant to increased fat-free
mass. Rather, it is due to the difference in the studies included for
body weight and fat mass analysis (all seven articles had body weight
data but only three of them had fat mass data). The outcomes of the
meta-analyses are summarized in Table 2.

Safety of insulin secretion suppression

We selected fasting blood glucose and peak blood glucose during oral
glucose tolerance tests to determine the impact of insulin suppression
on glucose metabolism. There was a slight but significant increase in
fasting blood glucose (MD =0.48 mmol/L; 95% CI: 0.24-0.72; 12=27%;
P<0.0001) (Figure 2F) and peak glucose (MD =1.88 mmol/L; 95% CI:
0.97-2.78; I’=0%; P<0.0001) (Figure 2G) in the intervention group
compared with the placebo group. Neither fasting nor peak blood glu-
cose levels reached the diagnostic criteria for diabetes in the interven-
tion group.

Sensitivity analysis

When including all studies for the analysis of body weight, BMI, and
fat mass, the heterogeneity was 69%, 80%, and 91%, respectively.
Therefore, sensitivity analysis was performed. The heterogeneity of the
body weight decreased from 69% to 13% (Table 3) with the exclusion
of data from Due et al. (36) and Lustig et al. (29). However, the esti-
mated mean change did not largely alter with (—2.92 kg; 95% CI: —4.45
to —1.38; P=0.0002) or without (-3.05 kg; 95% CI: -5.52 to —0.57;
P=0.02) the exclusion. Therefore, although the inclusion of Due et al.
(36) and Lustig et al. (29) led to high heterogeneity, it did not alter the
estimates.

For the estimated mean change of BMI, the heterogeneity decreased
from 80% to 40% after the exclusion of data from Due et al. (36)
and Brauner et al. (32). The heterogeneity of the mean change of fat
mass also decreased from 91% to 0% after the exclusion of data from
Due et al. (36). The possible source of heterogeneity comes from
the subjects in these two studies. In the study by Due et al. (36), the
baseline fasting insulin was significantly different between the treat-
ment and placebo groups (Table 1). This may cause bias when study-
ing the drug, which directly targeted insulin secretion. The patients
in the Brauner et al. study (32) were children with hypothalamic-
pituitary lesions, in which diazoxide failed to reduce insulin levels (32).
Because the hypothalamus plays a crucial role in the regulation of
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A Intervention Placebo Mean Difference Mean Difference
Study or Mean 5D Total Mean 5D Total Weight IV, 95% Cl  Year v, 95% CI
R. Alemzadeh 1998 -8.61 6.48 12 -431 7.97 12 21.9% -4.30(0-10.11, 1.51] 1998 p— sem—
RH. Lustig 2003 -1.56 29.19 10 -9.01 23.18 10 2.2% 7.45[-15.65, 30.55] 2003 +
A, Due 2006 -79. 775 13 -4.16 365 18 28.8% -3.74 [-8.28, 0.80] 2006 ——t-
R. Brauner 2016 -4 464 13 -4 9.85 17 24.3% 0.00 [-5.32, 5.32] 2016 —_—
S. Loves 2018 -12.5 6.9 9 -34 589 12 22.9% -9.10[-14.71,-3.49] 2018 T—e—
Total {(95% CI) 57 69 100.0% -3.94 [-7.40, -0.47] i
Heterogeneity: Tau® = 5.49; Chi* = 6,32, df = 4 (P = 0L18); I* = 37% = t . 1‘0

Test for overall effect: Z = 2.23 (P = 0.03)

-5 5
Diazoxide Placebo

B
Intervention Placebo Mean Difference Mean Difference

Study or Su Mean 50 Total Mean S0 Total Weight IV, Random, 95% €1 Year WV, Random, 95% CI

R. Alemzadeh 1998 -28 346 12 =5 346 12 19.7% -4.80]-7.57,-2.03) 1998 —

RH. Lustig 2003 1.6 1.9 10 9.1 538 10 17.1% -7.50 [-11.04, -3.96] 2003 —_—

A, Gambineri 2005 -9.2 17.39 10 -53 2567 8 1.3% -3.90 [-24.70, 16.90] 2005 +

RH. Lustig 2006 -1.79 3.82 44 008 321 44 23.9% -1.B8[-3.38, -0.38] 2006 —

A, Due 2006 -4.9 433 13 -64 3.82 18 19.1% 1.50 [-1.44, 4.44] 2006 S,

R. Brauner 2016 -1 10,02 13 -6.5 38.56 17 Le% 5.50[-13.62, 24.62] 2016

5. Loves 2018 =123 4.8 5 -83 277 12 17.2% -4.00(-7.51, -0.49] 2018 —

Total (95% CI) 111 121 100.0% -3.05[-5.52,-0.57] i

Heterogeneity: Tau® = 6.08; Chi® = 19.47, df = 6 (P = 0.003); I’ = 69% o i o

Test for overall effect Z = 2.41 (P = 0.02) Diazoxide Placebo
C

Intervention Placebo Mean Difference Mean Difference

Study or Subgrou; Mean SD Total Mean 5D Total Weight IV, Random, 95% C1_ Year IV, Random, 95% C1

RH. Lustig 2003 -0.2 0.63 10 22 158 10 28.5% -2.40[-3.45 -1.35] 2003 —

A, Gambineri 2005 -1.3 6.95 10 -21 7.71 & 1.2% -1.20[-8.06, 5.66] 2005

RH. Lustig 2006 -0.79 1.55 44 0.33 096 44  4B.6% -1.12 [-1.66, -0.58] 2006 —=

5. Loves 2018 -42 18 9 -23 104 12 21.7% -1.90[-3.21.-0.59] 2018 _—

Total (95% CI) 73 74 100.0% -1.65 [-2.41, -0.90] e

Heterogeneity: Tau® = 0.23; Chi* = 5.02,df = 3 (P = 0.17); ' = 40% . —:2 +

Test for overall effect: Z = 4.32 (P < 0.0001) Intervention Placebo
D Intervention Placebo Mean Difference Mean Difference

Study or Subgroup  Mean 5D Total Mean SD Total Weight IV, Fixed, 95% Cl IV, Fixed, 95% CI

R. Alemzadeh 1998 -9.3 3.46 12 -36 312 12 79.9% -5.70([-8.34, -3.06]

5. Loves 2018 -144 7.2 9 -7.6 416 12 20.1% -6.8B0[-12.06, -1.54] —

Total (95% CI) 21 24 100.0% -5.92 [-8.28, -3.56) e

Heterogeneity: Chi* = 0,13, df = 1 (P = 0.71); I¥ = 0% BT B 1

Test for overall effect: Z = 4,92 (P < 0.00001) Favours [experimental] Favours [control]
E Intervention Placebo Mean Difference Mean Difference

Study or Subgrou Mean  SD Total Mean SD Total Weight IV, Random, 95% Cl_ Year IV, Random, 95% CI

R. Alemzadeh 1998 3 104 12 -19% 173 12 70.6% 54, 1.74] 1998

A. Due 2006 0.2 2.52 13 0.2 4.24 18  16.1% .39, 2.39] 2006

S. Loves 2018 L7 3 9 0.7 3.12 12 13.2% 1.00 [-1.64, 3.64] 2018

Total (95% CI) 34 42 1000% 0.56 [-0.40, 1.52]

Heterogeneity: Tau® = 0.00; Chi* = 0.32, df = 2 (P = 0.85); I = 0% 23 =% ’ 3 %
Test for averall effect: Z = 1.14 (P = 0.26) Favours [experimental] Favours [control]
Intervention Placebo Mean Difference Mean Difference
Study or Subgroup  Mean  SD Total Mean SD Total Weight IV, 95% Cl Year v, i 95% CI
R. Alemzadeh 1998 0.17 0.35 12 -0.1 0.38 12 352% 0.271-0.02, 0.56] 1998 |
RH. Lustig 2003 0.85 0.92 10 0.07 0.86 10 8.3% 0.78 [-0.00, 1.56] 2003
A. Due 2006 0.23 0.76 13 -0.04 0.47 18 19.4% 0.27[-0.20, 0.74] 2006 T =
R. Brauner 2016 0.8 091 13 0.2 0.41 17 15.9% 0.60[0.07, 1.13] 2016 —
5. Loves 2018 0.7 0.6 9 -0.1 035 12 21.2% 0.80 [0.36, 1.24] 2018 ———
Total (95% CI) 57 69 100.0% 0.48 [0.24, 0.72] e
Heterogeneity: Tau® = 0.02; Chi' = 5.46, df = 4 (P = 0.24); I = 27% _"1 s 5 i
Test for overall effect: Z = 3.92 (P < 0.0001) Diazoxide Placebo
Intervention Placebo Mean Difference Mean Difference
Study or Subgroup _ Mean  SD Total Mean SD Total Weight IV, d 95% Cl_ Year IV, Rand 95% CI
RH. Lustig 2003 9.65 3.18 9 6.99 558 9 4.7%  2.66 [-1.54, 6.86] 2003 ]
A. Gambineri 2005 896 1.29 10 7.67 2.07 10 36.1% 1.29[-0.22, 2.80] 2005 -/
R. Brauner 2016 10.24 291 13 723 142 17 27.9% 3.01[1.29, 4.73] 2016 —_—t
5. Loves 2018 933 24 9 7.91 0.76 12 31.2%  1.42[-0.21, 3.05] 2018 T—
Total (95% CI) 41 48 100.0% 1.88 [0.97, 2.78] =
Heterogeneity: Tau® = 0.00; Chi* = 2,68, df = 3 (P = 0.44); I' = 0% S t 3

Test for overall effect: Z = 4.04 (P < 0.0001)

Intervention Placebo

Figure 2 Forest plots for meta-analysis comparing insulin secretion suppression group with the placebo group in (A)
fasting insulin, (B) body weight, (C) BMI, (D) fat mass and (E) fat-free mass, (F) fasting blood glucose, and (G) peak blood
glucose. df, degrees of freedom; IV, inverse variance. [Color figure can be viewed at wileyonlinelibrary.com]
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TABLE 2 Summary of outcomes in studies that suppress insulin secretion in individuals with obesity
No. of studies (active vs. placebo Weighted placebo-subtracted

sample size) mean difference (95% CI) P value
Fasting insulin (mIU/L) 5 (57 vs. 69) -3.94 (-7.40 to —0.47) <0.05
Body weight (kg) 7 (111 vs. 121) —-3.05 (-5.5210 —-0.57) <0.05
BMI (kg/m?) 4 (73 vs. 74) —1.65 (-2.41 10 0.90) <0.0001
Fat mass (kg) 2 (21 vs. 24) -5.92 (-8.28 to —3.56) <0.0001
Fat-free mass (kg) 3 (34 vs. 42) 0.56 (—0.40 to 1.52) 0.26
Fasting blood glucose (mmol/L) 5 (57 vs. 69) 0.48 (0.24100.72) <0.0001
Peak blood glucose (mmol/L) 4 (41 vs. 48) 1.88 (0.97 t0 2.78) <0.0001

TABLE 3 Sensitivity analysis of primary outcomes

Original model

Exclusion of Due et al. (36) (body weight, BMI, fat mass),
Lustig et al. (29) (body weight), and Brauner et al. (32) (BMI)

Sample size Mean difference Sample size (active Mean difference
(active vs. placebo) (95% ClI) 12 vs. placebo) (95% CI) 12
Weight (kg) 111 vs. 121 -3.05(-5.52t0-0.57)  69% 88 vs. 93 -2.92 (-4.4510 -1.38) 13%
BMI (kg/m?) 99 vs. 109 —-0.93 (-1.88 10 0.02) 80% 73vs. 74 —-1.65 (-2.41 t0 —0.90) 40%
Fat mass (kg) 34 vs. 42 -3.54 (-8.70 10 1.61) 91% 21vs. 24 -5.92 (-8.28 to —3.56) 0%

glucose metabolism, including control of insulin secretion via the
autonomic nervous system (37), children with hypothalamic-pitu-
itary lesions may have a different reaction to diazoxide compared
with individuals with intact hypothalamic neuronal circuits, which
is likely to be the possible source of heterogeneity. Therefore, we
excluded the Due et al. (36) and Brauner et al. (32) studies from the
meta-analysis of BMI and fat mass (Table 3).

Assessment of bias

Risk of bias of included articles was assessed by Review Manager
(Figure 3). Gambineri’s study (30) had high performance and detection
bias because of a single-blind intervention. However, no other signifi-
cant bias was observed.

Discussion

We performed a meta-analysis of randomized controlled trials evalu-
ating the efficacy and safety of insulin secretion suppression in peo-
ple with obesity. We pooled the data from clinical trials using the
drugs diazoxide and octreotide. Both drugs significantly suppressed
fasting insulin secretion in individuals with obesity. Suppression
of insulin secretion coincided with reduced body weight and BMI.
Moreover, the overall body composition appeared to improve, with
reduced fat mass and unchanged fat-free mass (Table 2). However,
it is unknown whether the beneficial effects of insulin suppression
in terms of reduced body weight and improved body composition in
obesity may be further extended to the prevention of any obesity-re-
lated complications, such as type 2 diabetes, cardiovascular diseases,
and cancers.

The efficacy of weight loss due to insulin secretion suppression was
similar to other antiobesity drugs. A meta-analysis showed that cur-
rently approved antiobesity medications lead to 3 to 5 kg of place-
bo-subtracted weight loss (2.87 kg for orlistat, 4.16 kg for sibutramine,
and 4.67 kg for rimonabant) in 1-year trials (38), which represents an
intervention time window with the most significant change (39). The
suppression of insulin secretion resulted in a 3.05-kg placebo-sub-
tracted weight loss in only 2- to 6-month trials. More weight loss may
be expected to occur if the treatment was prolonged to 1 year or more,
as indicated in the study by Loves et al. (33).

Overall, the beneficial effects of insulin suppression seen in human obe-
sity, including body weight loss and fat mass reduction, are consistent
with most of the findings in animal studies. Although direct mechanistic
studies in humans attempting to unveil the cause-effect of these drugs
in obesity remain limited, the mechanisms discovered in animal studies
may be applied to human studies to some extent. For example, the effect
of insulin secretion suppression was studied by a delicate experiment
that used gene modification to reduce the dosage of the insulin gene in
mice (8). In this study, mice with reduced insulin gene expression were
protected from diet-induced obesity, with a concurrent increase in white
adipose tissue browning and increase in energy expenditure (8). Using
streptozotocin to reduce beta-cell mass and hyperinsulinemia in obese
animals showed similar results, including reduced ectopic lipid accu-
mulation and reduced adipose tissue inflammation (5,40). These led to
reduced fat mass and improved insulin sensitivity following the reduction
of insulin secretion. Therefore, reduction of insulin secretion may serve
as a major mechanism in reducing fat accumulation in human obesity.

Apart from the reduction of hyperinsulinemia, diazoxide and oct-
reotide exert their beneficial effects in obese animals through other
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mechanisms. Diazoxide reduces food intake in most of the animal
studies (14,17-21). One animal study suggested that the reduction
of food intake was through suppression of insulin secretion and res-
toration of the impaired insulin uptake into the brain (14). Similar
food intake reduction effects occurred in two clinical studies with
octreotide, whereas the recalled calorie intake in patients with obe-
sity was decreased during the octreotide treatment period (41,42).
The effect of both drugs on food intake in individuals with obesity
requires further investigation. In addition, a 2011 study suggested
that diazoxide acutely inhibited gluconeogenesis in the liver in both
humans and rats (43).

However, in clinical trials, suppression of insulin secretion led to
a slight but significant increase in fasting blood glucose (Table 2).
This indicates a slight impairment of glucose metabolism following

insulin suppression treatment in the setting of obesity. This side
effect contradicts the glucose metabolism results in most animal
studies, in which glucose metabolism was improved by either diazox-
ide (14,17,19,21,22) or octreotide (24,27). The glucose metabolism
following long-term insulin suppression is mainly dependent on two
factors: the insufficient insulin secretion, which increases glucose
levels, and the improved insulin sensitivity, which reduces glucose
levels. It is likely that, because of the difference in species, the for-
mer factor dominates in clinical trials, whereas the latter dominates
in animal studies. However, limited data on insulin sensitivity are
available from the clinical trials with inconsistent results. Loves et al.
(34) showed a significant reduction of homeostatic model assessment
of insulin resistance in the diazoxide group, whereas Brauner et al.
(32) showed no significant difference between diazoxide and pla-
cebo groups. Whether prolonged insulin secretion suppression leads
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to better insulin sensitivity with improved glucose metabolism needs
further investigation. Although with increased blood glucose levels,
only three teenaged patients with hypothalamic-pituitary lesions
during childhood developed diabetes following drug treatment in one
study (32) among all seven studies selected (less than 3%). This indi-
cates that insulin suppression by diazoxide or octreotide is not likely
to cause diabetes in individuals with obesity.

Other side effects are not common among all the clinical trials using
diazoxide and octreotide. Edema is one of the side effects in diazox-
ide treatment (28,33,36) and it can be resolved after 2 weeks of ther-
apy (28). Hirsutism develops in some females with obesity following
diazoxide treatment (32). Diarrhea and cholelithiasis occur in some
patients treated with octreotide (31). These adverse effects are likely
drug-specific rather than because of suppression of insulin secretion.

This study has a few limitations. First, the relatively short duration of
the drug intervention in all included studies (8-24 weeks) and the inabil-
ity to collect other metabolic parameters—such as homeostatic model
assessment of insulin resistance, plasma triglyceride, free fatty acid,
and cholesterols—may constrain the long-term vision on obesity-re-
lated complications, such as the development of diabetes. Second, the
sample size of this meta-analysis was relatively small. This may cause
bias as well as the inability to perform age-based subgroup analysis for
the two studies in teenagers (29,32). Third, the effect of insulin secre-
tion suppression on the treatment of obesity may be driven by some
effects other than suppression of insulin secretion following diazoxide
or octreotide treatment (e.g., octreotide may inhibit gut and pancreatic
endocrine and exocrine secretion, thus causing malabsorption, which
may contribute to weight loss (44)). Therefore, more detailed emerging
clinical studies are needed to address these limitations.

In conclusion, the present meta-analysis suggests that suppression of
insulin secretion in the short term in patients with obesity is likely
to contribute to an improved phenotype (e.g., reduced body weight and
fat mass). Although glucose metabolism may be slightly impaired, the
suppression of insulin secretion is not likely to induce diabetes. Given
that previous findings support a causal role of hyperinsulinemia in the
development of obesity (9), it is reasonable to speculate that the sup-
pression of insulin secretion is an emerging target in the treatment of
obesity. Development of specific insulin secretion suppression drugs
with fewer side effects is encouraged in the future. Also, longer clinical
trials are encouraged so as to thoroughly evaluate the efficacy and risk
of insulin secretion suppression in the treatment of obesity.O
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