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Abstract

Introduction: Aromatic (ar-) turmerone is a major bioactive compound of the herb Curcuma longa. It has been

suggested that ar-turmerone inhibits microglia activation, a property that may be useful in treating neurodegenerative

disease. Furthermore, the effects of ar-turmerone on neural stem cells (NSCs) remain to be investigated.

Methods: We exposed primary fetal rat NSCs to various concentrations of ar-turmerone. Thereafter, cell proliferation

and differentiation potential were assessed. In vivo, naïve rats were treated with a single intracerebroventricular (i.c.v.)

injection of ar-turmerone. Proliferative activity of endogenous NSCs was assessed in vivo, by using noninvasive positron

emission tomography (PET) imaging and the tracer [18F]-fluoro-L-thymidine ([18F]FLT), as well as ex vivo.

Results: In vitro, ar-turmerone increased dose-dependently the number of cultured NSCs, because of an increase in

NSC proliferation (P < 0.01). Proliferation data were supported by qPCR-data for Ki-67 mRNA. In vitro as well as in vivo,

ar-turmerone promoted neuronal differentiation of NSCs. In vivo, after i.c.v. injection of ar-turmerone, proliferating NSCs

were mobilized from the subventricular zone (SVZ) and the hippocampus of adult rats, as demonstrated by both [18F]

FLT-PET and histology (P < 0.05).

Conclusions: Both in vitro and in vivo data suggest that ar-turmerone induces NSC proliferation. Ar-turmerone thus

constitutes a promising candidate to support regeneration in neurologic disease.

Introduction

Curcumin and ar-turmerone are the major bioactive com-

pounds of the herb Curcuma longa. Although many studies

have demonstrated curcumin to possess antiinflammatory

and neuroprotective properties (reviewed by [1]), to date,

the effects of ar-turmerone remain to be elucidated. For

example, antitumor properties, exerted via the induc-

tion of apoptosis [2] and inhibition of tumor cell invasion

[3], have been attributed to ar-turmerone. Park et al. [4,5]

recently suggested that ar-turmerone also possesses

antiinflammatory properties resulting from the blockade

of key signaling pathways in microglia. Because micro-

glia activation is a hallmark of neuroinflammation and

is associated with various neurologic disorders, inclu-

ding neurodegenerative diseases [6,7] and stroke [8,9],

ar-turmerone constitutes a promising therapeutic agent

for various neurologic disorders.

The regenerative potential of endogenous neural

stem cells (NSCs) plays an important role in neuro-

degenerative disease and stroke. Endogenous NSCs are

mobilized by cerebral ischemia [10] as well as by

various neurodegenerative diseases [11,12], although their

intrinsic regenerative response is insufficient to enable

functional recovery. The targeted (that is, pharmacologic)

activation of endogenous NSCs has been shown to enhance

self-repair and recovery of function in the adult brain in

both stroke [13,14] and neurodegeneration [15]. Impor-

tantly, NSCs and microglia relevantly interact with each

other, thereby affecting their respective functions [16,17].

Thus, with the perspective of ar-turmerone as a thera-

peutic option in mind, we investigated the effects of

ar-turmerone on NSCs in vitro and in vivo.
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Material and methods

Cell culture

NSCs were cultured from fetal rat cortex at embryonic day

14.5, as described previously [18]. Cells were expanded as

monolayer cultures in serum-free DMEM/F12 medium (Life

Technologies, Darmstadt, Germany) with N2 supplement

(Gibco, Karlsruhe, Germany) and fibroblast growth factor

(FGF2; 10 ng/ml; Invitrogen, Karlsruhe, Germany) for 5 days

and were replated in a 24-well plate at 10,000 cells per cm2.

FGF2 was included throughout the experiments.

Ar-turmerone (Fluka, Munich, Germany) was added to

cultures at replating at concentrations of 0, 1.56, 3.125,

6.25, 12.5, and 25 μg/ml. All experiments were performed

in triplicate. After 72 hours, representative pictures were

taken by using an inverted fluorescence phase-contrast

microscope (Keyence BZ-9000E). Three images were

taken per well, and cells were counted by using the soft-

ware ImageJ with a threshold of 20 px (National Institutes

of Health, Bethesda, MD, USA, Version 1.47 k).

To determine the ratio of proliferating cells, 10 μM bro-

modeoxyuridine (BrdU; Fluka, Munich, Germany) was

added to cultures for 6 hours, before cells were fixed with

4% PFA. Again, all experiments were performed in tripli-

cate. Cells were stained with mAb against BrdU to identify

proliferating cells (clone BU-33, dilution 1:100; Sigma-

Aldrich, Munich, Germany). For antigen-retrieval before

staining, sections were incubated in 2 N HCl for 30 mi-

nutes. For visualization, FITC-labeled anti-mouse IgG was

used (Invitrogen); all cells were additionally counter-

stained with Hoechst 33342 (Life Technologies). To calcu-

late the ratio of proliferating cells, BrdU-positive cells

were divided by the total cell number in each sample, and

mean values were established among equally treated cells.

To establish its effect on cell survival, ar-turmerone

was added to NSC cultures for 24 hours. To discrimi-

nate between live and dead cells, the live/dead cell-

mediated cytotoxicity kit (Life Technologies, cat. no.

L7010) was used according to the manufacturer’s

instructions. Both viable and dead NSCs were counted

in n = 6 samples per condition, and a ratio of surviving

cells was calculated for each field of view; mean values

were calculated for each concentration tested.

To assess the differentiation potential of NSCs treated

with ar-turmerone, mitogen was withdrawn during the

expansion phase, followed by a differentiation phase of

10 days, in the absence (control) or presence of 6.25 μg/ml

ar-turmerone. Immunocytochemistry with markers for

young neurons (TuJ1), astrocytes (GFAP), and oligodendro-

cytes (CNPase) was used to verify all three differentiated fates

of NSCs, whereas SOX2 marked undifferentiated NSCs.

Real-time quantitative PCR (RT-qPCR)

RNA from cells was isolated by using the RNeasy Mini Kit

(Qiagen, Hilden, Germany). Total RNA concentration and

purity were evaluated photometrically. Total RNA was

converted to c-DNA by reverse transcription with the

Quantitect reverse transcription kit (Qiagen). The primer

used for Ki67 was obtained from Biolegio (Nijmegen,

The Netherlands). The sequences of the primers were

as follows: (a) forward: TCTTGGCACTCACAGTCCAG,

and (b) reverse: GCTGGAAGCAAGTGAAGTCC. The

q-PCR reaction was carried out by using 10 ng total RNA

in a 20-μl reaction (Quantitect Reagents, Qiagen) accor-

ding to the manufacturer’s instructions. The samples were

amplified and quantified on a Rotorgene 2000 (Corbett,

Sydney, Australia) by using the following thermal cycler

conditions: activation: 95°C 10 minutes; cycling: 50 cycles,

step 1: 92°C, 15 seconds, step 2: 52°C, 15 seconds, and

step 3: 72°C, 40 seconds. PCR product integrity was evalu-

ated by melting-point analysis and agarose gel electro-

phoresis. Each sample and gene was normalized to

RPL13a as reference gene [19]. Ki67 mRNA levels were

normalized to endogenous RPL13a expression (ΔCT);

normalized values were then expressed as 2-ΔCt. Mean

values were calculated for treated and untreated cells.

Animals and surgery

All animal procedures were in accordance with the

German Laws for Animal Protection and were approved

by the local animal care committee (Buero der

Tierschutzbeauftragten, MPIfNF, Cologne, Germany), as

well as local governmental authorities (LANUV NRW

84–02.04.2012.A116). Spontaneously breathing male

Wistar rats weighing 290 to 330 g were anesthetized

with 5% isoflurane and maintained with 2.5% isoflurane

in 65%:35% nitrous oxide/oxygen. Throughout surgical

procedures, the body temperature was maintained at

37.0°C with a thermostatically controlled heating pad.

Intracerebroventricular injections

One group of animals (n = 3) underwent a single intra-

cerebroventricular (i.c.v.) injection of 3 mg ar-turmerone

at a concentration of 1 mg/μl. For control, n = 6 rats were

vehicle-injected with the identical volume of normal

saline. Under anesthesia with 1.5% isoflurane, each rat’s

skull was fixated in a stereotaxic frame in plane orienta-

tion. After incision of the skin, the bregma was exposed,

and a burr hole was drilled over the right lateral ventricle

by using the following stereotaxic coordinates: bregma,

AP −0.9 mm; ML, −1.4 mm; and VD, +3.8 mm. Ar-

turmerone dissolved in normal saline, or respectively, pure

saline as control, was injected at 1 μl/min. After injection,

the needle was left in place for another 5 minutes to allow

a distribution of the solution within the ventricles. The

needle was thereafter withdrawn slowly, and the skin

sutured with nonabsorbing silk.

After each procedure, all animals were allowed to

recover from anesthesia and were put back into their
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home cages, where they were given access to food and

water ad libitum.

BrdU injections

In all animals, the tracer bromodeoxyuridine (BrdU) was

injected intraperitoneally for 5 days, starting on the day of

i.c.v. injection, at a concentration of 50 mg/kg per injec-

tion, as described previously [18]. This regimen resulted

in a cumulative dose of 250 mg/kg BrdU per animal.

Positron emission tomography (PET)

[18F]-fluoro-L-thymidine ([18F]FLT) was synthesized as

described previously [20]. Seven days after i.c.v. injection

of ar-turmerone or placebo, respectively, PET imaging

was performed on a microPET Focus 220 scanner

(Concorde Microsystems, Inc., Knoxville, TN, USA;

63 image planes; 1.5-mm full width at the half ma-

ximum). Animals were anesthetized with 5% isoflurane,

maintained with 2% isoflurane in a 65%:35% nitrous

oxide/oxygen atmosphere, and placed in the scanner.

Temperature was monitored by using a rectal probe and

maintained at 37°C ± 0.5°C by a thermostatically con-

trolled water-flow system (Medres, Cologne, Germany).

After a 10-minute transmission scan for attenuation

correction, rats received an intravenous bolus injection

of [18F]FLT (1.0 to 2.2 mCi/rat), and emission data were

acquired for 60 minutes. PET data were reconstructed in

two time frames of 1,800 seconds. The last frame (that

is, minutes 31 to 60 after tracer injection) was used for

image analysis.

Image analysis

PET images were co-registered to anatomic data of a 3D

rat-brain atlas constructed from the brain slices pre-

sented by Swanson [21]. Based on the 3D anatomic data,

ellipsoid volumes of interest (VOIs) measuring 4 mm3

were placed to cover the subventricular zone (SVZ) as well

as the dentate gyrus region of the hippocampus. A stan-

dard uptake value (SUV) was calculated for each VOI,

dividing maximal VOI activity by the decay-corrected

injected radioactive dose per body weight. SUVs were

individually determined and then averaged between

animals within each group.

Immunohistochemistry

After PET imaging, or 7 days after ar-turmerone treat-

ment, rats were deeply anesthetized and decapitated.

The brains were rapidly removed, frozen in isopentane,

and stored at −80°C before further histologic and immu-

nohistochemical processing. Ten-μm-thick adjacent ser-

ial coronal brain sections were cut at 500-μm intervals

and stained with anti-BrdU to identify proliferating cells

(mAb clone BU-33, dilution 1:200; Sigma-Aldrich), or

with anti-doublecortin (DCX) to identify neuroblasts

(rabbit polyclonal, dilution 1:1,000, Sigma-Aldrich). For

antigen-retrieval before BrdU staining, sections were

microwave-heated in 0.01M citrate buffer, pH 6.0, for

5 minutes, followed by 2 N HCl at 37°C for 30 minutes.

For visualization, the ABC Elite kit (Vector Laboratories

with diaminobenzidine (Sigma-Aldrich) as the final

reaction product was used.

To quantify the width of the SVZ and of the dentate

gyrus of the hippocampus, it was measured on three

consecutive BrdU-stained slices per animal, and an ave-

rage was calculated per animal. To quantify the number

of neuroblasts in the SVZ, their number was counted on

three consecutive DCX-stained slices within a standar-

dized field-of-view for each animal. For both schemes of

quantification, mean values were calculated for each

group of animals.

Statistical analysis

Descriptive statistics were performed with Microsoft

Excel 2003 (Microsoft Corp., Redmond, WA, USA).

One-way ANOVA tests (followed by Holm-Sidak post

hoc test) were performed with SigmaPlot 11.0 for

Windows (Systat Software Inc., San Jose, CA, USA).

Statistical significance was set at P < 0.05.

Results

Effects on NSC proliferation in vitro

To assess the effects of ar-turmerone on NSC in primary

culture, rat fetal NSC were grown in the presence of

various concentrations of ar-turmerone for 72 hours.

Cell numbers significantly increased when NSCs were

treated with 3.125 to 25 μg/ml ar-turmerone (P < 0.05),

with a maximum increase of NSC numbers by ~80% at

6.25 μg/ml (Figure 1A; P < 0.01).

With the BrdU-incorporation assay, we next investi-

gated whether this increase in NSC number was caused

by an increase in NSC proliferation. Indeed, treatment

with certain concentrations of ar-turmerone significantly

increased the percentage of proliferating NSCs from ~50%

to ~80% (Figure 1B; P < 0.01). This result was verified on

the mRNA level by using qPCR for the proliferation

marker Ki67. In line with the BrdU data, treatment with

6.25 μg/ml ar-turmerone led to a significant increase in

Ki67 mRNA (Figure 1C; P < 0.05).

To assess whether ar-turmerone affected NSC survival,

viable and dead cells were determined after 24 hours,

and the proportion of surviving cells was quantified for

each concentration of ar-turmerone. Concentrations

between 1.56 and 6.25 μg/ml that had yielded the ma-

ximum effect on NSC proliferation did not affect cell

survival. Higher concentrations of 12.5 and 25 μg/ml led

to a significant decrease in the number of viable NSCs

(Figure 1D; P < 0.05).
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Figure 1 Ar-turmerone increases NSC proliferation in vitro. (A) Ar-turmerone significantly increased the numbers of fetal rat NSCs in primary

monolayer culture (mean ± SEM; *P < 0.05, compared with control), dependent on its concentration; representative phase-contrast images are

depicted of NSC-treated without (Aʹ) or with (Aʹʹ) 6.25 μg/ml ar-turmerone (bar represents 200 μm). (B) Ar-turmerone significantly increased

the number of proliferating NSCs, as assessed by BrdU-incorporation (mean ± SEM; **P < 0.01, compared with control), dependent on its

concentration; representative images are depicted of NSCs treated without (Bʹ) or with (Bʹʹ) 3.125 μg/ml ar-turmerone, stained for BrdU-incorporation

(bar represents 200 μm). (C) Treating NSCs with 6.25 μg/ml ar-turmerone led to a significant increase in Ki67 mRNA; mRNA levels were

normalized to endogenous RPL13a expression and calculated with the 2-ΔCt method; data are depicted as mean ± SEM; *P < 0.05. (D) In high

concentrations, ar-turmerone significantly decreased ratio of surviving NSCs within 24 hours of treatment, wheres concentrations between

1.56 and 6.25 μg/ml had no effect (mean ± SEM; *P < 0.05, compared with control).
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Differentiation potential of NSCs

To assess the effect of ar-turmerone on the differentiation

potential of NSCs in vitro, cells in the expansion phase

were treated with or without 6.25 μg/ml ar-turmerone

and allowed to differentiate for 10 days by withdrawal

of FGF2. Compared with that in untreated control

cells, the differentiation process was significantly

accelerated in ar-turmerone-treated NSCs, with fewer

undifferentiated (SOX2-positive) cells 10 days after

FGF2-withdrawal (Figure 2A; P < 0.01). Moreover,

ar-turmerone-treated NSCs preferentially differenti-

ated into young neurons, as assessed by TuJ1 staining,

compared with untreated control cells (Figure 2A, B;

P < 0.01). The generation of GFAP-positive astrocytes

Figure 2 Ar-turmerone induces neurogenesis in vitro and in vivo. (A) NSCs were allowed to differentiate in the absence (control) or presence

of 6.25 μg/ml ar-turmerone. Immunocytochemistry 10 days after growth-factor discontinuation revealed fewer undifferentiated (SOX2+) NSCs in

the turmerone-treated group, but more young neurons. The generation of astrocytes and oligodendrocytes was not affected by ar-turmerone

(mean ± SEM; **P < 0.01, compared with control). (B) Representative images of differentiated cells include CNPase-positive oligodendrocytes

(left), TuJ1-positive young neurons (middle), and GFAP-positive astrocytes (right); bar represents 50 μm. (C) After i.c.v. injection of 3 mg (1 mg/μl)

ar-turmerone, significantly more DCX-positive neuroblasts were observed in the SVZ compared with placebo-injected control animals (mean ±

SEM; **P < 0.01). (D) Representative staining of DCX-positive neuroblasts in the SVZ (bar represents 50 μm).
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and CNPase-positive oligodendrocytes was unaffected

by ar-turmerone (Figure 2A, B).

To investigate the effects of ar-turmerone on neurogen-

esis in vivo, adult rats were injected with 3 mg ar-turmerone

into the lateral ventricle of the brain (intracerebroventricu-

lar, i.c.v.). One week after treatment, the number of DCX-

positive neuroblasts in the subventricular zone (SVZ) was

significantly increased compared with placebo-injected con-

trol animals (Figure 2C, D).

Proliferation of endogenous NSCs in vivo

The effect of ar-turmerone on endogenous NSCs in vivo

was assessed by injecting adult rats with ar-turmerone

i.c.v. For the following 5 days, rats received daily sys-

temic injections of BrdU to label proliferating cells in vivo.

Immunohistochemistry 1 week after ar-turmerone treat-

ment revealed the SVZ of treated rats to be wider than

that of placebo-injected control animals, as measured

by BrdU staining (Figure 3A). Differences in the size of

the SVZ, as assessed by BrdU-staining, were statistically

significant (Figure 3B; P < 0.05). BrdU-staining of the

hippocampus did not reveal a statistically significant

increase in the width of the dentate gyrus, although a

trend was noted toward a wider dentate gyrus after treat-

ment with ar-turmerone (Figure 3C).

Mobilization of endogenous NSCs from the neurogenic

niches

A noninvasive PET-imaging assay was used to visualize

and quantify the mobilization of endogenous NSCs from

the neurogenic niches of ar-turmerone-treated animals

in vivo. One week after i.c.v. injection of ar-turmerone,

the radiotracer [18F]FLT was injected systemically to

label proliferating endogenous NSCs in vivo, and then

PET data were acquired and co-registered to a 3D rat

brain atlas.

The brains of ar-turmerone-treated rats showed

marked accumulation of [18F]FLT in the SVZ ipsi- and

contralateral to the i.c.v. injection (Figure 4A), compared

with saline-injected control animals (Figure 4B). More-

over, ar-turmerone-treated rats showed significantly

more [18F]FLT-accumulation in both the SVZ and the

hippocampus than the control animals (P < 0.01), thus

indicating a mobilization of proliferating NSCs from

both neurogenic niches (Figure 4C).

Discussion

The data suggest that ar-turmerone increases the proli-

ferative activity of NSCs. Recently, both positive and

negative effects on proliferation have been attributed to

ar-turmerone, dependent on the cell type studied [22].

Although ar-turmerone inhibited the proliferation of

various cancer cell lines, it enhanced proliferation of

peripheral blood mononuclear cells [22]. With the

prospect of evaluating ar-turmerone as a drug candidate

for neurodegenerative disorders or stroke, one must keep

in mind that enhancing the proliferation of NSCs, espe-

cially by genetic manipulations, bears a certain oncogenic

risk [23]. However, pharmacologic expansion of the stem

cell niche without genetic manipulations seems to be less

associated with an increased cancer risk [13,14].

Another issue to be considered before promoting the

use of ar-turmerone in clinical studies is that we here

applied ar-turmerone in vivo via i.c.v. injection, a route

that is obviously not applicable in clinical studies.

Figure 3 Proliferation of endogenous NSC is induced by ar-turmerone

in vivo. (A) Staining for proliferating NSCs with anti-BrdU demonstrates

that the subventricular zone (SVZ) of rats treated with 3 mg (1 mg/μl)

ar-turmerone i.c.v. (left) was wider than that of placebo-treated control

animals (Aʹ, right); bar represents 100 μm. (B) Differences in the

width of the SVZ were statistically significant (mean ± SEM; *P < 0.05,

compared with control). (C) BrdU staining of the hippocampus did

not reveal a statistically significant increase in the width of the

dentate gyrus, although a trend was noted favoring ar-turmerone

(mean ± SEM).
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However, another recent study found good bioavailabi-

lity of ar-turmerone after both intravenous or intra-

peritoneal injection in the mouse [24].

In vivo, ar-turmerone expanded the width of the SVZ

by ~45%. An expansion of this NSC niche has also been

demonstrated for other pharmacologic agents such

as growth factors [13,14]. In a similar experimental

setting, we previously observed that FGF2 expanded the

SVZ by ~350%, whereas a combination of the Notch

ligand Delta-like 4 and insulin led to an increase in the

width of the SVZ of ~66% [18]. Our data therefore

suggest that the effect of ar-turmerone on the NSC

niche in vivo is somewhat smaller than that of ”classic”

NSC-activation pathways. Nevertheless, the pleiotropic

effects of ar-turmerone render it a promising drug for

further studies.

Ar-turmerone was recently described to inhibit the

LPS- or Aß-induced activation of microglia through in-

hibition of NF-κB, JNK-, and p38-MAPK pathways [4,5].

Microglia activation as the hallmark of an innate inflam-

matory response of the central nervous system (CNS)

has been found in many neurologic disorders that are

considered to be primarily nonimmunogenic, such as

stroke [25,26], traumatic brain injury (TBI [27], Parkinson

disease [6], or Alzheimer disease [7]. NSC and immune

cells interact extensively [16,17,28-30]. Therefore, thera-

peutically regulating one entity’s fate is likely to influence

the other.

Yet, our knowledge about the interaction of NSCs

and inflammatory responses in the CNS with regard to

regeneration and functional recovery to date remains

scarce. On attraction by proinflammatory cytokines,

endogenous NSCs considerably affect this regenerative

response [31,32], for example, through inducing remyeli-

nization [33] and neuroprotection [15]. As ar-turmerone

both limits microglia activation and induces NSC prolife-

ration, it constitutes a promising future drug candidate to

support regeneration in neurologic disorders.

In the presence of mitogen in cell culture, as well as

under physiological conditions in vivo, we found ar-

turmerone to promote neurogenesis. However, after FGF2

discontinuation in vitro, treatment with ar-turmerone led

to an accelerated decrease of undifferentiated NSC, indi-

cating an early exit from the cell cycle. This effect suggests

that ar-turmerone may act as a weak antagonist on the

FGF-receptor only in the absence of the ligand.

Further studies are needed to clarify such a putative

relationship. In support of this notion, a recent report

suggests that ar-turmerone acts as an antagonist on the

related epidermal growth factor (EGF) receptor [34].

Noninvasive in vivo imaging is a crucial tool for transla-

tion from bench to bedside (that is, from experimental

animal to human studies). We used PET imaging and the

radiotracer [18F]FLT that enables imaging and measuring

of proliferation, thereby allowing noninvasive detection

and quantification of endogenous NSC mobilization in the

Figure 4 Endogenous NSCs in the neurogenic niches of the rat brain are mobilized by ar-turmerone in vivo. (A) [18F]FLT-PET of a rat

brain 1 week after intracerebroventricular injection of ar-turmerone shows enhanced accumulation of [18F]FLT in the subventricular zone com-

pared with (B) Saline-injected control brain, indicating an increase of proliferating endogenous NSCs caused by ar-turmerone. (C) Ar-turmerone-

treated rats showed significantly more [18F]FLT accumulation in the SVZ and the hippocampus than did control animals (mean ± SEM; **P < 0.01).
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adult rat brain in vivo [18]. This imaging assay is capable

of monitoring the effects of drugs aimed at expanding the

NSC niche [35]. By using [18F]FLT-PET, we here found ar-

turmerone to mobilize NSCs from both neurogenic

niches, the SVZ and the dentate gyrus of the hippo-

campus, in vivo. Thus, this study provides further evi-

dence for NSC activation by ar-turmerone, spanning from

cell-culture findings to in vivo imaging.

Conclusions

In this study, we investigated the effects of ar-turmerone

on NSCs in vitro and in vivo. Ar-turmerone increased the

number of NSCs both in cell culture and in the adult rat

brain in vivo. This increase resulted from enhanced NSC

proliferation and led to promoted neurogenesis during

differentiation. In vivo, ar-turmerone mobilized endoge-

nous NSCs from both neurogenic niches, the SVZ and the

hippocampus. We propose that ar-turmerone constitutes

a promising future drug candidate to support regeneration

in neurologic disorders.
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